
APPENDIX E

Fortran 95 OpenMP Directives

This information is extracted from the Fortran Programming Guide, Appendix E.

The Sun Fortran 95 compiler supports the OpenMP 2.0 Fortran API. The -openmp
compiler flag enables these directives.

This section lists the OpenMP directives, library routines, and environment variables

supported by f95 . For details about parallel programming with OpenMP, see the

OpenMP 2.0 Fortran specification at http://www.openmp.org/.

The following table summarizes the OpenMP directives supported by f95 . Items

enclosed in square brackets ([...]) are optional. The compiler permits comments to

follow an exclamation mark (!) on the same line as the directive. When compiling

with -openmp , the CPP/FPP variable _OPENMPis defined and may be used for

conditional compilation within #ifdef _OPENMP and #endif .

TABLE E-1 Summary of OpenMP Directives in Fortran 95

Directive Format (Fixed) C$OMPdirective optional_clauses...
!$OMP directive optional_clauses...
*$OMPdirective optional_clauses...

Must start in column one; continuation lines must have a non-

blank or non-zero character in column 6

Directive Format (Free) !$OMP directive optional_clauses...

May appear anywhere, preceded by whitespace; an ampersand

(&) at the end of the line identifies a continued line.

Conditional Compilation Source lines beginning with !$, C$, or *$ in columns 1 and 2

(fixed format), or !$ preceded by white space (free format) are

compiled only when compiler option -openmp , or -mp=openmp
is specified.
177

PARALLELDirective !$OMP PARALLEL[clause[[,] clause]...]

block of Fortran statements with no transfer in or out of block
!$OMP END PARALLEL

Defines a parallel region: a block of code that is to be executed by

multiple threads in parallel. clause can be one of the following:

PRIVATE(list), SHARED(list), DEFAULT(option),

FIRSTPRIVATE(list), REDUCTION(list), IF (logical_expression),

COPYIN(list), NUM_THREADS(integer_expression).

DODirective !$OMP DO[clause[[,] clause]...]

do_loop statements block
[!$OMP END DO[NOWAIT]]

The DOdirective specifies that the iterations of the DO loop that

immediately follows must be executed in parallel. This directive

must appear within a parallel region. clause can be one of the

following: PRIVATE(list), FIRSTPRIVATE(list),
LASTPRIVATE(list), REDUCTION(list), SCHEDULE(type),

ORDERED.

SECTIONSDirective !$OMP SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]
block of Fortran statements with no transfer in or out
[!$OMP SECTION
optional block of Fortran statements]

...

!$OMP END SECTIONS[NOWAIT]

Encloses a non-iterative section of code to be divided among

threads in the team. Each section is executed once by a thread in

the team. clause can be one of the following: PRIVATE(list),
FIRSTPRIVATE(list), LASTPRIVATE(list), REDUCTION(list).

Each section is preceded by a SECTIONdirective, which is

optional for the first section.

SINGLE Directive !$OMP SINGLE [clause[[,] clause]...]

block of Fortran statements with no transfer in or out
!$OMP END SINGLE[end-modifier]

The statements enclosed by SINGLE is to be executed by only

one thread in the team. Threads in the team that are not

executing the SINGLE block of statements wait at the END
SINGLE directive unless NOWAITis specified. clause can be one

of: PRIVATE(list), FIRSTPRIVATE(list). end-modifier is either

COPYPRIVATE(list) [[,]COPYPRIVATE(list...)] or NOWAIT.

TABLE E-1 Summary of OpenMP Directives in Fortran 95 (Continued)
178 Fortran User’s Guide • July 2001

WORKSHAREDirective !$OMP WORKSHARE
block of Fortran statements
!$OMP END WORKSHARE[NOWAIT]

Divides the work of executing the enclosed code block into

separate units of work, and causes the threads of the team to

share the work such that each unit is executed only once.

PARALLEL DODirective !$OMP PARALLEL DO[clause[[,] clause]...]

do_loop statements block
[!$OMP END PARALLEL DO]

Shortcut for specifying a parallel region that contains a single

DO loop: a PARALLELdirective followed immediately by a DO
directive. clause can be any of the clauses accepted by the

PARALLELand DOdirectives.

PARALLEL SECTIONS
Directive

!$OMP PARALLEL SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]
block of Fortran statements with no transfer in or out
[!$OMP SECTION
optional block of Fortran statements]

...

!$OMP END PARALLEL SECTIONS

Shortcut for specifying a parallel region that contains a single

SECTIONSdirective: a PARALLELdirective followed by a

SECTIONSdirective. clause can be any of the clauses accepted

by the PARALLELand SECTIONSdirectives.

PARALLEL WORKSHARE
Directive

!$OMP PARALLEL WORKSHARE[clause[[,] clause]...]

block of Fortran statements
!$OMP END PARALLEL WORKSHARE

Provides a shortcut for specifying a parallel region that contains

a single WORKSHAREdirective. clause can be one of the clauses

accepted by either the PARALLELor WORKSHAREdirective.

Synchronization Directives

MASTERDirective !$OMP MASTER
block of Fortran statements with no transfers in or out
!$OMP END MASTER

The block of statements enclosed by these directives is executed

only by the master thread of the team. The other threads skip

this block and continue. There is no implied barrier on entry to

or exit from the master section.

TABLE E-1 Summary of OpenMP Directives in Fortran 95 (Continued)
Appendix E Fortran 95 OpenMP Directives 179

CRITICAL Directive !$OMP CRITICAL [(name)]

block of Fortran statements with no transfers in or out
!$OMP END CRITICAL [(name)]

Restrict access to the statement block enclosed by these

directives to only one thread at a time. The optional name
argument identifies the critical region. All unnamed CRITICAL
directives map to the same name. Critical section names are

global entities of the program. If a name conflicts with any other

entity, the behavior of the program is undefined. If name
appears on the CRITICAL directive, it must also appear on the

END CRITICAL directive.

BARRIERDirective !$OMP BARRIER

Synchronizes all the threads in a team. Each thread waits until

all the others in the team have reached this point.

ATOMICDirective !$OMP ATOMIC

Ensures that a specific memory location is to be updated

atomically, rather than exposing it to the possibility of multiple,

simultaneous writing threads.

The directive applies only to the immediately following

statement, which must be one of these forms:

x = x operator expression
x = expression operator x
x = intrinsic(x, expression)
x = intrinsic(expression, x)
where:

• x is a scalar of intrinsic type

• expression is a scalar expression that does not reference x
• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of + - * / .AND. .OR. .EQV. .NEQV.

This implementation replaces all ATOMIC directives by enclosing the
target statement in a critical section.

TABLE E-1 Summary of OpenMP Directives in Fortran 95 (Continued)
180 Fortran User’s Guide • July 2001

FLUSHDirective !$OMP FLUSH[(list)]

Thread-visible variables are written back to memory at the

point at which this directive appears. The FLUSHdirective only

provides consistency between operations within the executing

thread and global memory. The optional list consists of a

comma-separated list of variables that need to be flushed. The

FLUSHdirective is implied for the following directives:

BARRIER, CRITICAL /ENDCRITICAL, ENDDO, END SECTIONS,
ENDSINGLE, ENDWORKSHARE, ORDERED/ENDORDERED,

PARALLEL/ENDPARALLEL, PARALLEL/ENDPARALLELDO,
PARALLELSECTIONS/ENDPARALLELSECTIONS,
PARALLELWORKSHARE/ENDPARALLELWORKSHARE. FLUSHis not

implied if NOWAITis specified. It is not implied by: DO,

MASTER/ENDMASTER, SECTIONS, SINGLE, and WORKSHARE.

ORDEREDDirective !$OMP ORDERED
block of Fortran statements with no transfers in or out
!$OMP END ORDERED

The enclosed block of statements are executed in the order that

iterations would be executed in a sequential execution of the

loop. It can appear only in the dynamic extent of a DOor

PARALLEL DOdirective. The ORDEREDclause must be specified

on the closest DOdirective enclosing the block.

Data Environment Directives

THREADPRIVATE
Directive

!$OMP THREADPRIVATE(list)

Makes the list of variables and named common blocks private to

a thread but global within the thread. Common block names

must appear between slashes. To make a common block

THREADPRIVATE, this directive must appear after every

COMMONdeclaration of that block.

Data Scoping Clauses

Several directives noted above accept clauses to control the scope attributes of variables

enclosed by the directive. If no data scope clause is specified for a directive, the default

scope for variables affected by the directive is SHARED. list is a comma-separated list of

named variables or common blocks that are accessible in the scoping unit. Common block

names must appear within slashes (for example, /ABLOCK/)

PRIVATE Clause PRIVATE(list)

Declares the variables in the comma separated list to be private

to each thread in a team.

TABLE E-1 Summary of OpenMP Directives in Fortran 95 (Continued)
Appendix E Fortran 95 OpenMP Directives 181

SHAREDClause SHARED(list)

All the threads in the team share the variables that appear in

list, and access the same storage area.

DEFAULTClause DEFAULT(PRIVATE | SHARED | NONE)

Specify scoping attribute for all variables within a parallel

region. THREADPRIVATEvariables are not affected by this

clause. If not specified, DEFAULT(SHARED)is assumed.

FIRSTPRIVATE Clause FIRSTPRIVATE(list)

Variables on list are PRIVATE. In addition, private copies of the

variables are initialized from the original object existing before

the construct.

LASTPRIVATE Clause LASTPRIVATE(list)

Variables on the list are PRIVATE. In addition, when the

LASTPRIVATEclause appears on a DO directive, the thread that

executes the sequentially last iteration updates the version of

the variable before the construct. On a SECTIONSdirective, the

thread that executes the lexically last SECTIONupdates the

version of the object it had before the construct.

REDUCTIONClause REDUCTION([operator|intrinsic]: list)

operator is one of: + * - .AND. .OR. .EQV. .NEQV.
intrinsic is one of: MAX MIN IAND IOR IEOR
Variables in list must be named variables of intrinsic type.

The REDUCTIONclause is intended to be used on a region in

which the reduction variable is used only in reduction

statements of the form shown previously for the ATOMIC
directive. Variables on list must be SHAREDin the enclosing

context. A private copy of each variable is created for each

thread as if it were PRIVATE. At the end of the reduction, the

shared variable is updated by combining the original value with

the final value of each of the private copies.

COPYINClause COPYIN(list)

The COPYINclause applies only to variables, common blocks,

and variables in common blocks that are declared as

THREADPRIVATE. In a parallel region, COPYINspecifies that the

data in the master thread of the team be copied to the thread

private copies of the common block at the beginning of the

parallel region.

TABLE E-1 Summary of OpenMP Directives in Fortran 95 (Continued)
182 Fortran User’s Guide • July 2001

COPYPRIVATEClause COPYPRIVATE(list)

Uses a private variable to broadcast a value, or a pointer to a

shared object, from one member of a team to the other

members. Variables in list must not appear in a PRIVATE or

FIRSTPRIVATE clause of the SINGLE construct specifying

COPYPRIVATE..

Scheduling Clauses on DOand PARALLEL DODirectives

SCHEDULEClause SCHEDULE(type [,chunk])

Specifies how iterations of the DO loop are divided among the

threads of the team. type can be one of the following. In the

absence of a SCHEDULEclause, STATIC scheduling is used.

STATIC Scheduling SCHEDULE(STATIC, chunk)

Iterations are divided into pieces of a size specified by chunk.

The pieces are statically assigned to threads in the team in a

round-robin fashion in the order of the thread number. chunk
must be a scalar integer expression.

DYNAMICScheduling SCHEDULE(DYNAMIC,chunk)

Iterations are broken into pieces of a size specified by chunk. As

each thread finishes a piece of the iteration space, it

dynamically obtains the next set of iterations.

GUIDEDScheduling SCHEDULE(GUIDED,chunk)

With GUIDED, the chunk size is reduced in an exponentially

decreasing manner with each dispatched piece of the iterations.

chunk specifies the minimum number of iterations to dispatch

each time. (Default chunk size is 1. The size of the initial piece

of the iterations is the number of iterations in the loop divided

by the number of threads executing the loop.)

RUNTIMEScheduling SCHEDULE(RUNTIME)

Scheduling is deferred until runtime. Schedule type and chunk
size will be determined from the setting of the OMP_SCHEDULE
environment variable. (Default is STATIC.)

TABLE E-1 Summary of OpenMP Directives in Fortran 95 (Continued)
Appendix E Fortran 95 OpenMP Directives 183

OpenMP Library Routines

OpenMP Fortran API library routines are external procedures. In the following

summary, int_expr is a default scalar integer expression, and logical_expr is a default

scalar logical expression.

OMP_functions returning INTEGER(4) and LOGICAL(4) are not intrinsic and must

be declared properly, otherwise the compiler will assume REAL. Interface

declarations for the OpenMP Fortran runtime library routines summarized below

are provided by the Fortran include file omp_lib.h and a Fortran 95 MODULE
omp_lib , as described in the Fortran OpenMP 2.0 specifications. Supply an

INCLUDE 'omp_lib.h' statement or #include "omp_lib.h" preprocessor

directive, or a USE omp_lib statement in every program unit that references these

library routines.

Compiling with -Xlist will report any type mismatches.

TABLE E-2 Summary of Fortran 95 OpenMP Library Routines

Execution Environment Routines

OMP_SET_NUM_THREADSSubroutine

SUBROUTINE OMP_SET_NUM_THREADS(int_expr)

Sets the number of threads to use for the next parallel region.

OMP_GET_NUM_THREADSFunction

INTEGER(4) FUNCTION OMP_GET_NUM_THREADS()
Returns the number of threads currently in the team executing the

parallel region from which it is called.

OMP_GET_MAX_THREADSFunction

INTEGER(4) FUNCTION OMP_GET_MAX_THREADS()
Returns the maximum value that can be returned by calls to the

OMP_GET_NUM_THREADS function.

OMP_GET_THREAD_NUMFunction

INTEGER(4) FUNCTION OMP_GET_THREAD_NUM()
Returns the thread number within the team. This is a number

between 0 and OMP_GET_NUM_THREADS()-1.The master thread is

thread 0.

OMP_GET_NUM_PROCSFunction

INTEGER(4) FUNCTION OMP_GET_NUM_PROCS()
Returns the number of processors that are available to the program.
184 Fortran User’s Guide • July 2001

OMP_IN_PARALLELFunction

LOGICAL(4) FUNCTION OMP_IN_PARALLEL()
Returns .TRUE. if called from within the dynamic extent of a region

executing in parallel, and .FALSE. otherwise.

OMP_SET_DYNAMICSubroutine

SUBROUTINE OMP_SET_DYNAMIC(logical_expr)

Enables or disables dynamic adjustment of the number of threads

available for parallel execution of programs. (Dynamic adjustment

is enabled by default).

OMP_GET_DYNAMICFunction

LOGICAL(4) FUNCTION OMP_GET_DYNAMIC()

Returns .TRUE. if dynamic thread adjustment is enabled and returns

.FALSE. otherwise.

OMP_SET_NESTEDSubroutine

SUBROUTINE OMP_SET_NESTED(logical_expr)

Enables or disables nested parallelism. (Nested parallelism is

disabled by default.) Nested parallelism is not supported.

OMP_GET_NESTEDFunction

LOGICAL(4) FUNCTION OMP_GET_NESTED()
Returns .TRUE. if nested parallelism is enabled, .FALSE. otherwise.

Nested parallelism is not supported; this function will always return
.FALSE.

Lock Routines
Two types of locks are supported: simple locks and nestable locks. Nestable locks

may be locked multiple times by the same thread before being unlocked; simple

locks may not be locked if they are already in a locked state. Simple lock variables

may only be passed to simple lock routines, and nested lock variables only to nested

lock routines.

The lock variable var must be accessed only through these routines. Use the

parameters OMP_LOCK_KINDand OMP_NEST_LOCK_KIND(defined in omp_lib.h
INCLUDE file and the omp_lib MODULE) for this purpose. For example,

INTEGER(KIND=OMP_LOCK_KIND) :: var
INTEGER(KIND=OMP_NEST_LOCK_KIND) :: nvar

TABLE E-2 Summary of Fortran 95 OpenMP Library Routines (Continued)
Appendix E Fortran 95 OpenMP Directives 185

OMP_INIT_LOCKSubroutine

SUBROUTINE OMP_INIT_LOCK(var)
SUBROUTINE OMP_INIT_NEST_LOCK(nvar)

Initializes a lock associated with lock variable var for use in

subsequent calls. The initial state is unlocked.

OMP_DESTROY_LOCKSubroutine

SUBROUTINE OMP_DESTROY_LOCK(var)
SUBROUTINE OMP_DESTROY_NEST_LOCK(nvar)

Disassociates the given lock variable var from any locks.

OMP_SET_LOCKSubroutine

SUBROUTINE OMP_SET_LOCK(var)
SUBROUTINE OMP_SET_NEST_LOCK(nvar)
Forces the executing thread to wait until the specified lock is

available. The thread is granted ownership of the lock when it is

available.

OMP_UNSET_LOCKSubroutine

SUBROUTINE OMP_UNSET_LOCK(var)
SUBROUTINE OMP_UNSET_NEST_LOCK(nvar)
Releases the executing thread from ownership of the lock. Behavior

is undefined if the thread does not own that lock.

OMP_TEST_LOCKFunction

LOGICAL FUNCTION OMP_TEST_LOCK(var)
INTEGER FUNCTION OMP_TEST_NEST_LOCK(nvar)
Attempts to set the lock associated with lock variable. Returns

.TRUE. if the simple lock was set successfully, .FALSE. otherwise.

OMP_TEST_NEST_LOCKreturns the new nesting count if the lock

associated with nvar was set successfully, otherwise it returns 0.

Timing Routines
These two functions, returning double precision (REAL(8)) , support a portable wall-

clock timer.

OMP_GET_WTIMEFunction

REAL(8) FUNCTION OMP_GET_WTIME()
Returns a double precision value equal to the elapsed wallclock

time in seconds since “some arbitrary time in the past”

OMP_GET_WTICKFunction

REAL(8) FUNCTION OMP_GET_WTICK()
Returns a double precision value equal to the number of seconds

between successive clock ticks.

TABLE E-2 Summary of Fortran 95 OpenMP Library Routines (Continued)
186 Fortran User’s Guide • July 2001

OpenMP Environment Variables

TABLE E-3 and TABLE E-4 summarize the OpenMP Fortran API environment

variables that control the execution of OpenMP programs.

TABLE E-3 Summary of OpenMP Fortran Environment Variables

OMP_SCHEDULE
Sets schedule type for DOand PARALLEL DOdirectives specified with schedule type

RUNTIME. If not defined, a default value of STATIC is used. Value is “type[,chunk]”
Example: setenv OMP_SCHEDULE “GUIDED,4” .

OMP_NUM_THREADS
Sets the number of threads to use during execution, unless set by a NUM_THREADSclause, or

a call to OMP_SET_NUM_THREADS() subroutine.

If not set, a default of 1 is used. Value is a positive integer. (Current maximum is 128).

Example: setenv OMP_NUM_THREADS 16

OMP_DYNAMIC
Enables or disables dynamic adjustment of the number of threads available for execution of

parallel regions. If not set, a default value of TRUEis used. Value is TRUEor FALSE.

Example: setenv OMP_DYNAMIC FALSE

OMP_NESTED
Enables or disables nested parallelism. (Nested parallelism is not supported.)

Value is TRUEor FALSE. The default, if not set, is FALSE.

Example: setenv OMP_NESTED TRUE
Appendix E Fortran 95 OpenMP Directives 187

TABLE E-4 Environment variables not part of the OpenMP Fortran API

SUNW_MP_WARN
Controls warning messages issued by the runtime library. If set TRUE, the runtime library

issues warning messages to stderr ; FALSE disables warning messages. The default is

FALSE. Example: setenv SUNW_MP_WARN TRUE

SUNW_MP_THR_IDLE
Controls the end-of-task status of each thread executing the parallel part of a program. You

can set the value to spin , sleep ns , or sleep nms. The default is SPIN — a thread should

spin (or busy-wait) after completing a parallel task, until a new parallel task arrives.

Choosing SLEEPtime specifies the amount of time a thread should spin-wait after

completing a parallel task. If, while a thread is spinning, a new task arrives for the thread,

the tread executes the new task immediately. Otherwise, the thread goes to sleep and is

awakened when a new task arrives. time may be specified in seconds, (ns) , or just (n) , or

milliseconds, (nms) .

SLEEPwith no argument puts the thread to sleep immediately after completing a parallel

task. SLEEP, SLEEP (0) , SLEEP (0s) , and SLEEP (0ms) are all equivalent.

Example: setenv SUNW_MP_THR_IDLE (50ms)

STACKSIZE
Sets the thread stack size. The value is in kilobytes.

Example: setenv STACKSIZE 8192 sets the thread stack size to 8Mb.
188 Fortran User’s Guide • July 2001

	Fortran 95 OpenMP Directives
	TABLE�E�1 Summary of OpenMP Directives in Fortran 95 �
	OpenMP Library Routines
	TABLE�E�2 Summary of Fortran 95 OpenMP Library Routines �
	OpenMP Environment Variables
	TABLE�E�3 Summary of OpenMP Fortran Environment Variables �
	TABLE�E�4 Environment variables not part of the OpenMP Fortran API

