
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

Fortran User’s Guide

Forte Developer 6 update 2
(Sun WorkShop 6 update 2)

Part No. 806-7988-10
July 2001, Revision A

Please
Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,

or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Cray Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Cray Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

Contents

Before You Begin 1

How This Book Is Organized 1

Typographic Conventions 2

Shell Prompts 3

Supported Platforms 3

Accessing Sun WorkShop Development Tools and Man Pages 3

Accessing Sun WorkShop Documentation 5

Accessing Related Documentation 6

Ordering Sun Documentation 7

Sending Your Comments 7

1. Introduction 9

Standards Conformance 9

Features of the Fortran Compilers 10

Other Fortran Utilities 11

Debugging Utilities 11

Sun Performance Library™ 12

Interval Arithmetic 12

Man Pages 12

READMEs 14
v

Command-Line Help 15

2. Using Sun Fortran Compilers 17

A Quick Start 17

Invoking the Compiler 19

Compile-Link Sequence 20

Command-Line File Name Conventions 20

Source Files 21

Source File Preprocessors 21

Separate Compiling and Linking 22

Consistent Compiling and Linking 22

Linking Mixed Fortran 95 and Fortran 77 Compilations 23

Unrecognized Command-Line Arguments 23

Modules (Fortran 95) 24

Directives 24

General Directives 25

Parallelization Directives 29

OpenMP Directives 30

f95: Library Interfaces and system.inc 31

Compiler Usage Tips 32

Determining Hardware Platform 32

Memory Size 33

3. Fortran Compiler Options 37

Command Syntax 37

Options Syntax 38

Options Summary 39

Commonly Used Options 43

Backward Compatibility and Legacy Options 44
vi Fortran User’s Guide • July 2001

Obsolescent Options 45

Options Reference 45

A. Runtime Error Messages 125

Operating System Error Messages 125

Signal Handler Error Messages (f77) 126

I/O Error Messages (f77) 126

I/O Error Messages (f95) 130

B. Features Release History 137

Fortran 95 New Features and Changes 137

f95 New Features in Sun WorkShop 6 update 2: 137

f95 New Features in Sun WorkShop 6 update 1: 138

f95 New Features in Sun WorkShop 6: 139

New Features Released In f90 2.0: 140

Fortran 77 New Features and Changes 143

f77 New Features in Sun WorkShop 6 update 2: 143

f77 New Features in Sun WorkShop 6 update 1: 143

f77 New Features in Sun WorkShop 6: 144

Features in f77 5.0: 144

Features in f77 4.2: 145

FORTRAN 77 Upward Compatibility 145

Fortran 3.0/3.0.1 to 4.0 146

BCP: Running Applications from Solaris 1 146

C. Fortran 95 Features and Differences 147

Features and Extensions 147

Continuation Line Limits 147

Fixed-Form Source Lines 147
Contents vii

Directives 147

Source Form Assumed 148

Known Limits 149

Boolean Type 149

Abbreviated Size Notation for Numeric Data Types 152

Cray Pointers 153

Other Language Extensions 157

I/O Extensions 158

Directives 160

Form of Special f95 Directive Lines 160

FIXED and FREE Directives 161

Parallelization Directives 162

Intrinsics 162

Compatibility with FORTRAN 77 163

Incompatibility Issues Between f95 and f77 163

I/O Compatibility 164

Linking with f77 -Compiled Routines 165

Intrinsics 166

Forward Compatibility 167

Mixing Languages 167

Module Files 167

D. –xtarget Platform Expansions 169

E. Fortran Directives Summary 175

General Fortran Directives 175

Special Fortran 95 Directives 177

Sun Parallelization Directives 177
viii Fortran User’s Guide • July 2001

Cray Parallelization Directives 179

Fortran 95 OpenMP Directives 180

OpenMP Library Routines 187

OpenMP Environment Variables 190

Index 193
Contents ix

x Fortran User’s Guide • July 2001

Tables

TABLE 1-1 READMEs of Interest 14

TABLE 2-1 File Name Suffixes Recognized by Sun Fortran Compilers 20

TABLE 2-2 Summary of General Fortran Directives 26

TABLE 3-1 Options Syntax 38

TABLE 3-2 Typographic Notations for Options 38

TABLE 3-3 Compiler Options Grouped by Functionality 39

TABLE 3-4 Commonly Used Options 43

TABLE 3-5 Backward Compatibility Options 44

TABLE 3-6 Obsolescent Options 45

TABLE 3-7 Default Data Sizes and –dbl (Bytes) 53

TABLE 3-8 Subnormal REAL and DOUBLE 62

TABLE 3-9 Default Data Sizes and –r8 (Bytes) 85

TABLE 3-10 –vax= Suboptions 92

TABLE 3-11 –Xlist Suboptions 94

TABLE 3-12 –xarch ISA Keywords 95

TABLE 3-13 Most General -xarch Options on SPARC Platforms 96

TABLE 3-14 -xarch Values for SPARC Platforms 97

TABLE 3-15 –xcache Values 100

TABLE 3-16 Valid –xchip Values 101
xi

TABLE A-1 f77 Runtime I/O Messages 127

TABLE A-2 f95 Runtime I/O Messages 130

TABLE C-1 F95 Source Form Command-line options 148

TABLE C-2 Size Notation for Numeric Data Types 152

TABLE C-3 Nonstandard Intrinsics 162

TABLE D-1 -xtarget Expansions 169

TABLE E-1 Summary of General Fortran Directives 175

TABLE E-2 Special Fortran 95 Directives 177

TABLE E-3 Sun-Style Parallelization Directives Summary 177

TABLE E-4 Cray Parallelization Directives Summary 179

TABLE E-5 Summary of OpenMP Directives in Fortran 95 180

TABLE E-6 Summary of Fortran 95 OpenMP Library Routines 187

TABLE E-7 Summary of OpenMP Fortran Environment Variables 190

TABLE E-8 Environment variables not part of the OpenMP Fortran API 191
xii Fortran User’s Guide • July 2001

Before You Begin

The Fortran User’s Guide describes the compile-time environment and command-line

options for the Sun WorkShop™ 6 Fortran compilers: f77 (FORTRAN 77) and f95
(Fortran 95).

This guide is intended for scientists, engineers, and programmers who have a

working knowledge of the Fortran language and wish to learn how to use the Sun

Fortran compilers effectively. Familiarity with the Solaris operating environment or

UNIX® in general is also assumed.

Discussion of Fortran programming issues on Solaris™ operating environments,

including input/output, application development, library creating and use, program

analysis, porting, optimization, and parallelization can be found in the companion

Sun WorkShop Fortran Programming Guide.

Other Fortran manuals in this collection include the Fortran Library Reference, and the

FORTRAN 77 Language Reference. See “Accessing Related Documentation” on page 6.

How This Book Is Organized

Chapter 1 briefly describes the features of the compilers.

Chapter 2 discusses the compiler environments.

Chapter 3 gives detailed descriptions of all the compile-time command-line options

and flags.

Appendix A lists error messages issued by the Fortran runtime library and operating

environment.

Appendix B notes new features of the compilers and changes in recent releases.
1

Appendix C describes the differences between the Sun f95 compiler and the Fortran

95 standard, and incompatibilities with f77 programs.

Appendix D lists all the platform system names accepted by the compiler -xtarget
option.

Appendix E summarizes the directives accepted by the compilers, including

parallelization and OpenMP directives.

Typographic Conventions

The following table and notes describe the typographical conventions used in the

manual.

■ The symbol ∆ stands for a blank space where a blank is significant:

■ FORTRAN 77 examples appear in tab format, while Fortran 95 examples appear

in free format. Examples common to both Fortran 77 and 95 use tab format except

where indicated.

■ The FORTRAN 77 standard uses an older convention of spelling the name

“FORTRAN” capitalized. Sun documentation uses both FORTRAN and Fortran.

The current convention is to use lower case: “Fortran 95".

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.

∆∆36.001
2 Fortran User’s Guide • July 2001

■ References to online man pages appear with the topic name and section number.

For example, a reference to GETENV will appear as getenv (3F), implying that

the man command to access this page would be: man -s 3F getenv

■ System Administrators may install the Sun WorkShop Fortran compilers and

supporting material at: <install_point>/SUNWspro/ where <install_point> is

usually /opt for a standard install. This is the location assumed in this book.

Shell Prompts

Supported Platforms

This Sun WorkShop™ release of the Fortran compilers supports only versions 2.6, 7,

and 8 of the Solaris™ SPARC™ Platform Edition.

Accessing Sun WorkShop Development

Tools and Man Pages

The Sun WorkShop product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Sun

WorkShop compilers and tools, you must have the Sun WorkShop component

directory in your PATHenvironment variable. To access the Sun WorkShop man

pages, you must have the Sun WorkShop man page directory in your MANPATH
environment variable.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
Before You Begin 3

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 update 2 Installation Guide or your system

administrator.

Note – The information in this section assumes that your Sun WorkShop 6 update 2

products are installed in the /opt directory. If your product software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Sun WorkShop Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Sun WorkShop compilers and tools.

To Determine If You Need to Set Your PATHEnvironment
Variable

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

To Set Your PATHEnvironment Variable to Enable Access to
Sun WorkShop Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

% echo $PATH
4 Fortran User’s Guide • July 2001

Accessing Sun WorkShop Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Sun WorkShop man pages.

To Determine If You Need to Set Your MANPATHEnvironment
Variable

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in the next

section for setting your MANPATHenvironment variable.

To Set Your MANPATHEnvironment Variable to Enable Access
to Sun WorkShop Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Sun WorkShop

Documentation

You can access Sun WorkShop product documentation at the following locations:

■ The product documentation is available from the documentation index
installed with the product on your local system or network.

Point your Netscape™ Communicator 4.0 or compatible Netscape version browser

to the following file:

/opt/SUNWspro/docs/index.html

% man workshop
Before You Begin 5

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

■ Manuals are available from the docs.sun.comsm Web site.

The docs.sun.com Web site (http://docs.sun.com) enables you to read,

print, and buy Sun Microsystems manuals through the Internet. If you cannot

find a manual, see the documentation index installed with the product on your

local system or network.

Accessing Related Documentation

The following table describes related documentation that is available through the

docs.sun.com Web site.

Document Collection Document Title Description

Forte™ for High

Performance Computing

Collection

Fortran Programming Guide Discusses issues relating to

input/output, libraries,

program analysis, debugging,

and performance.

Fortran Library Reference Provides details about the

library routines supplied with

the Fortran compilers

FORTRAN 77 Language
Reference

Provides a complete language

reference to Sun FORTRAN 77.

Numerical Computation

Guide Collection

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Solaris 8 Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris 8 Software

Developer Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris 8 Software

Developer Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
6 Fortran User’s Guide • July 2001

Ordering Sun Documentation

You can order product documentation directly from Sun through the

docs.sun.com Web site or from Fatbrain.com, an Internet bookstore. You can find

the Sun Documentation Center on Fatbrain.com at the following URL:

http://www.fatbrain.com/documentation/sun

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com
Before You Begin 7

8 Fortran User’s Guide • July 2001

CHAPTER 1

Introduction

The Sun Fortran compilers, f77 and f95 , described in this book (and the companion

Sun WorkShop Fortran Programming Guide) are available under the Solaris operating

environment on SPARC and UltraSPARC™ platforms. The compilers themselves

conform to published Fortran language standards, and provide many extended

features, including multiprocessor parallelization, sophisticated optimized code

compilation, and mixed C/Fortran language support.

The Fortran compilers are components of the Forte™ for High Performance

Computing (Sun Performance WorkShop™) software. The Fortran 90 compiler, f90 ,

has been renamed Fortran 95, f95 . The f90 command is now an alias for f95 —

both invoke the Fortran 95 compiler.

Standards Conformance
■ f77 was designed to be compatible with the ANSI X3.9-1978 Fortran standard

and the corresponding International Organization for Standardization (ISO)

1539-1980, as well as standards FIPS 69-1, BS 6832, and MIL-STD-1753.

■ f95 was designed to be compatible with the ANSI X3.198-1992, ISO/IEC

1539:1991, and ISO/IEC 1539:1997 standards documents.

■ Floating-point arithmetic for both compilers is based on IEEE standard 754-1985,

and international standard IEC 60559:1989.

■ On SPARC platforms, both compilers provide support for the optimization-

exploiting features of SPARC V8, and SPARC V9, including the UltraSPARC

implementation. These features are defined in the SPARC Architecture Manuals,

Version 8 (ISBN 0-13-825001-4), and Version 9 (ISBN 0-13-099227-5), published by

Prentice-Hall for SPARC International.

■ In this document, “Standard” means conforming to the versions of the standards

listed above. “Non-standard” or “Extension” refers to features that go beyond

these versions of these standards.
9

The responsible standards bodies may revise these standards from time to time. The

versions of the applicable standards to which these compilers conform may be

revised or replaced, resulting in features in future releases of the Sun Fortran

compilers that create incompatibilities with earlier releases.

Features of the Fortran Compilers

Sun Fortran compilers provide the following features or extensions:

■ Global program checking across routines for consistency of arguments, commons,

parameters, and the like.

■ Support for multiprocessor systems, including automatic and explicit loop

parallelization, is integrated tightly with optimization.

Note – Parallelization features of the Fortran compilers require a Forte for HPC

license.

■ f77 : Many VAX/VMS Fortran 5.0 extensions, including:

■ NAMELIST
■ DO WHILE
■ Structures, records, unions, maps

■ Variable format expressions

■ Recursion

■ Pointers

■ Double-precision complex

■ Quadruple-precision real

■ Quadruple-precision complex

■ Cray-style parallelization directives, including TASKCOMMON, with extensions for

f95 .

■ OpenMP parallelization directives accepted by f95.

■ Global, peephole, and potential parallelization optimizations produce high

performance applications. Benchmarks show that optimized applications can run

significantly faster when compared to unoptimized code.

■ Common calling conventions on Solaris systems permit routines written in C or

C++ to be combined with Fortran programs.

■ Support for 64-bit enabled Solaris environments on UltraSPARC platforms.

■ Call-by-value, %VAL, implemented in both f77 and f95 .

■ Interoperability between Fortran 77 and Fortran 95 programs and object binaries.

■ Interval Arithmetic expressions in f95 .
10 Fortran User’s Guide • July 2001

See Appendix B for details on new and extended features added to the compilers

with each software release.

Other Fortran Utilities

The following utilities provide assistance in the development of software programs

in Fortran:

■ Sun WorkShop Performance Analyzer — In depth performance analysis tool for

single threaded and multi-threaded applications. See analyzer (1).

■ asa — This Solaris utility is a Fortran output filter for printing files that have

Fortran carriage-control characters in column one. Use asa to transform files

formatted with Fortran carriage-control conventions into files formatted

according to UNIX line-printer conventions. See asa (1).

■ fpp — A Fortran source code preprocessor. See fpp (1).

■ fsplit — This utility splits one Fortran file of several routines into several files,

each with one routine per file. Use fsplit on FORTRAN 77 or Fortran 95 source

files. See fsplit (1)

Debugging Utilities

The following debugging utilities are available:

■ error — (f77 only) A utility to merge compiler error messages with the Fortran

source file. (This utility is included if you do a developer install, rather than an

end user install of Solaris; it is also included if you install the SUNWbtool
package.)

■ -Xlist — A compiler option to check across routines for consistency of

arguments, COMMON blocks, and so on.

■ Sun WorkShop —Provides a visual debugging environment based on dbx and

includes a data visualizer and performance data collector.
Chapter 1 Introduction 11

Sun Performance Library™

The Sun Performance Library is a library of optimized subroutines and functions for

computational linear algebra and Fourier transforms. It is based on the standard

libraries LAPACK, BLAS1, BLAS2, BLAS3, FFTPACK, VFFTPACK, and LINPACK

generally available through Netlib (www.netlib.org).

Each subprogram in the Sun Performance Library performs the same operation and

has the same interface as the standard library versions, but is generally much faster

and accurate and can be used in a multiprocessing environment.

See the performance_library README file, and the Sun Performance Library
User’s Guide for Fortran and C for details. (Man pages for the performance library

routines are in section 3P.)

Interval Arithmetic

The Fortran 95 compiler provides the compiler flags -xia and -xinterval to

enable new language extensions and generate the appropriate code to implement

interval arithmetic computations.

See the Fortran 95 Interval Arithmetic Programming Reference for details.

Man Pages

Online manual (man) pages provide immediate documentation about a command,

function, subroutine, or collection of such things. See the Preface for the proper

setting of the MANPATHenvironment variable for accessing Sun WorkShop man

pages.)

You can display a man page by running the command:

demo% man topic
12 Fortran User’s Guide • July 2001

Throughout the Fortran documentation, man page references appear with the topic

name and man section number: f95 (1) is accessed with man f95 . Other sections,

denoted by ieee_flags (3M) for example, are accessed using the -s option on the

man command:

The Fortran library routines are documented in the man page section 3F.

The following lists man pages of interest to Fortran users:

demo% man -s 3M ieee_flags

f77 (1) and f95 (1) The Fortran compilers command-line options

analyzer (1) Sun WorkShop Performance Analyzer

asa (1) Fortran carriage-control print output post-processor

dbx (1) Command-line interactive debugger

fpp (1) Fortran source code pre-processor

cpp (1) C source code pre-processor

fsplit (1) Pre-processor splits Fortran 77 routines into single files

ieee_flags (3M) Examine, set, or clear floating-point exception bits

ieee_handler (3M) Handle floating-point exceptions

matherr (3M) Math library error handling routine

ild (1) Incremental link editor for object files

ld (1) Link editor for object files
Chapter 1 Introduction 13

READMEs
The READMEsdirectory contains files that describe new features, software

incompatibilities, bugs, and information that was discovered after the manuals were

printed. The location of this directory depends on where your software was

installed. The path is: install_directory/SUNWspro/READMEs/ . In a normal install,

install_directory is /opt .

The READMEs for all compilers are easily accessed by the -xhelp=readme
command-line option. For example, the command:

f95 -xhelp=readme

will display the fortran_95 README file directly.

TABLE 1-1 READMEs of Interest

README File Describes...

fortran_77 new and changed features, known limitations, documentation

errata for this release of the FORTRAN 77 compiler, f77.

fortran_95 new and changed features, known limitations, documentation

errata for this release of the Fortran 95 compiler, f95 .

fpp_readme overview of fpp features and capabilities

interval_arithmetic overview of the interval arithmetic features in f95

math_libraries optimized and specialized math libraries available.

omp_directives.pdf summarizes OpenMP directives accepted by f95 . (This is a

PDF file.)

profiling_tools using the performance profiling tools, prof , gprof , and

tcov .

runtime_libraries libraries and executables that can be redistributed under the

terms of the End User License.

64bit_Compilers compiling for 64-bit Solaris operating environments.

performance_library overview of the Sun Performance Library
14 Fortran User’s Guide • July 2001

Command-Line Help

You can view very brief descriptions of the f77 and f90 command line options by

invoking the compiler’s -help option as shown below:

%f77 -help -or-
 f95 -help

Items within [] are optional. Items within < > are variable
parameters.Bar | indicates choice of literal values. For example:
 -someoption[=<yes|no>] implies -someoption is

-someoption=yes

-a: Collect data for tcov basic block profiling

(old format)
-ansi: Report non-ANSI extensions.
-arg=local: Preserve actual arguments over ENTRY statements
-autopar: Enable automatic loop parallelization

(requires WorkShop license)
-Bdynamic: Allow dynamic linking
-Bstatic: Require static linking
-c: Compile only - produce .o files, suppress linking
-C: Enable runtime subscript range checking
-cg89: Generate code for generic SPARC V7 architecture
-cg92: Generate code for SPARC V8 architecture
-copyargs: Allow assignment to constant arguments
...etc.
Chapter 1 Introduction 15

16 Fortran User’s Guide • July 2001

CHAPTER 2

Using Sun Fortran Compilers

This chapter describes how to use the Fortran 77 and Fortran 95 compilers.

The principal use of any compiler is to transform a program written in a procedural

language like Fortran into a data file that is executable by the target computer

hardware. As part of its job, the compiler may also automatically invoke a system

linker to generate the executable file.

The Sun Fortran 77 and Fortran 95 compilers can also be used to:

■ Generate a parallelized executable file for multiple processors (-parallel) .

■ Analyze program consistency across source files and subroutines and generate a

report (-Xlist) .

■ Transform source files into:

■ Relocatable binary (.o) files, to be linked later into an executable file or static

library (.a) file.

■ A dynamic shared library (.so) file (-G).

■ Link files into an executable file.

■ Compile an executable file with runtime debugging enabled (-g).

■ Compile with runtime statement or procedure level profiling (-pg).

■ Compile an executable file with runtime parallelized loop profiling (-Zlp).

■ Check source code for ANSI standards conformance (-ansi).

A Quick Start

This section provides a quick overview of how to use the Sun Fortran compilers to

compile and run Fortran programs. A full reference to command-line options

appears in the next chapter.
17

Note – The command line examples in this chapter primarily show f77 usages.

Except where noted, equivalent usages of f95 are similarly valid; however, the

printed output may be slightly different.

The very basic steps to running a Fortran application involve using an editor to

create a Fortran source file with a .f , .for , .f90 , .f95 , .F , .F90 , or .F95 filename

suffix; invoking the compiler to produce an executable; and finally, launching the

program into execution by typing the name of the file:

Example: This program displays a message on the screen:

In this example, f77 compiles source file greetings.f and links the executable

program onto the file, a.out , by default. To launch the program, the name of the

executable file, a.out , is typed at the command prompt.

Traditionally, UNIX compilers write executable output to the default file called

a.out . It can be awkward to have each compilation write to the same file. Moreover,

if such a file already exists, it will be overwritten by the next run of the compiler.

Instead, use the -o compiler option to explicitly specify the name of the executable

output file:

In the preceding example, the -o option tells the compiler to write the executable

code to the file greetings . (By convention, executable files usually are given the

same name as the main source file, but without an extension.)

demo% cat greetings.f
PROGRAM GREETINGS
PRINT *, 'Real programmers write Fortran!'
END

demo% f77 greetings.f
greetings.f:
 MAIN greetings:
demo% a.out
 Real programmers write Fortran!
demo%

demo% f77 –o greetings greetings.f
greetings.f:
MAIN greetings:
demo%
18 Fortran User’s Guide • July 2001

Alternatively, the default a.out file could be renamed via the mv command after

each compilation. Either way, run the program by typing the name of the executable

file:

Here is the same example, using f95 :

The next sections of this chapter discuss the conventions used by the f77 and f95
commands, compiler source line directives, and other issues concerning the use of

these compilers. The next chapter describes the command-line syntax and all the

options in detail.

Invoking the Compiler

The syntax of a simple compiler command invoked at a shell prompt is:

Here files... is one or more Fortran source file names ending in .f , .F , .f90 , .f95 ,

.F90 , .F95 , or .for ; options is one or more of the compiler option flags. (Files with

names ending in a .f90 or .f95 extension are “free-format” Fortran 95 source files

recognized only by the f95 compiler.)

demo% greetings
 Real programmers write Fortran!
demo%

demo% cat greetings.f95
program greetings
print*, 'Real programmers write Fortran 95!'
end
demo% f95 -o greetings greetings.f95
demo% greetings

Real programmers write Fortran 95!
demo%

f77 [options] files... invokes the Fortran 77 compiler

f95 [options] files... invokes the Fortran 95 compiler
Chapter 2 Using Sun Fortran Compilers 19

In the example below, f95 is used to compile two source files to produce an

executable file named growth with runtime debugging enabled:

Note – You can invoke the Sun WorkShop 6 Fortran 95 compiler with either the f95
or f90 command — f90 is now an alias for f95 .

Compile-Link Sequence

In the previous example, the compiler automatically generates the loader object files,

growth.o and fft.o , and then invokes the system linker to create the executable

program file growth .

After compilation, the object files, growth.o and fft.o, will remain. This

convention permits easy relinking and recompilation of files.

If the compilation fails, you will receive a message for each error. No .o files are

generated for those source files with errors, and no executable program file is

written.

Command-Line File Name Conventions

The suffix extension attached to file names appearing on the command-line

determine how the compiler will process the file. File names with a suffix extension

other than one of those listed below, or without an extension, are passed to the

linker.

demo% f95 -g -o growth growth.f fft.f95

TABLE 2-1 File Name Suffixes Recognized by Sun Fortran Compilers

Suffix Language Action

.f Fortran 77 or

Fortran 95

fixed-format

Compile Fortran source files, put object files in current

directory; default name of object file is that of the source but

with .o suffix.

.f95

.f90
Fortran 95

free-format

Same action as .f (f95 only)

.for Fortran 77 or

Fortran 95

Same action as .f .
20 Fortran User’s Guide • July 2001

Fortran 95 free-format is described in Appendix C of this manual.

Source Files

The Fortran compilers will accept multiple source files on the command line. A

single source file, also called a compilation unit, may contain any number of

procedures (main program, subroutine, function, block data, module, and so on).

Applications may be configured with one source code procedure per file, or by

gathering procedures that work together into single files. The Fortran Programming
Guide describes the advantages and disadvantages of these configurations.

Source File Preprocessors

Both f77 and f95 support two source file preprocessors, fpp and cpp . Either can be

invoked by the compiler to expand source code “macros” and symbolic definitions

prior to compilation. The compilers will use fpp by default; the -xpp=cpp option

changes the default from fpp to cpp . (See also the discussion of the -D name option).

fpp is a Fortran-specific source preprocessor. See the fpp (1) man page and the fpp
README for details. It is invoked by default by f77 on files with a .F extension and

by f95 on files with a .F , .F90 , or .F95 extension.

.F Fortran 77 or

Fortran 95

fixed-format

Apply the Fortran (or C) preprocessor to the Fortran 77 source

file before compilation.

.F95

.F90
Fortran 95

free-format

Apply the Fortran (or C) preprocessor to the Fortran 95 free-

format source file before Fortran compiles it. (f95 only)

.s Assembler Assemble source files with the assembler.

.S Assembler Apply the C preprocessor to the assembler source file before

assembling it.

.il Inline

expansion

Process template files for inline expansion. The compiler will

use templates to expand inline calls to selected routines.

(Template files are special assembler files; see the inline (1)

man page.)

.o Object files Pass object files through to the linker.

.a,.s

.o,

.so. n

Libraries Pass names of libraries to the linker. .a files are static libraries,

.so and .so. n files are dynamic libraries.

TABLE 2-1 File Name Suffixes Recognized by Sun Fortran Compilers (Continued)

Suffix Language Action
Chapter 2 Using Sun Fortran Compilers 21

The source code for fpp is available from the Netlib web site at

http://www.netlib.org/fortran/

See cpp (1) for information on the standard Unix C language preprocessor. Use of

fpp over cpp is recommended on Fortran source files.

Separate Compiling and Linking

You can compile and link in separate steps. The -c option compiles source files and

generates .o object files, but does not create an executable. Without the -c option

the compiler will invoke the linker. By splitting the compile and link steps in this

manner, a complete recompilation is not needed just to fix one file, as shown in the

following example:

Compile one file and link with others in separate steps:

Be sure that the link step lists all the object files needed to make the complete

program. If any object files are missing from this step, the link will fail with

undefined external reference errors (missing routines).

Consistent Compiling and Linking

Ensuring a consistent choice of compiling and linking options is critical whenever

compilation and linking are done in separate steps. Compiling any part of a program

with any of the following options requires linking with the same options:

–a, –autopar, -B x, –fast, -G, -L path, -l name, -mt, -xmemalign,
-nolib, -norunpath, –p, –pg, -xlibmopt, -xlic_lib= name,
-xprofile= p

Example: Compiling sbr.f with –a and smain.f without it, then linking in

separate steps (–a invokes tcov old–style profiling):

demo% f95 -c file1.f (Make new object file)
demo% f95 -o prgrm file1.o file2.o file3.o (Make executable file)

demo% f95 -c -a sbr.f
demo% f95 -c smain.f
demo% f95 -a sbr.o smain.o link step; passes -a to the linker
22 Fortran User’s Guide • July 2001

Also, a number of options require that all source files be compiled with that option,

including the link step. These include:

-autopar, -aligncommon, -d x, -dalign, -dbl, -explicitpar, -f,
-misalign, -native, -parallel, -r8, -xarch= a, -xcache= c,
-xchip= c, -xF, -xtarget= t, -xtypemap, -ztext

Linking Mixed Fortran 95 and Fortran 77

Compilations

As a general rule, if any of the object files that make up a program were compiled

with f95 , then the final link step must be done with f95 . Use f77 to produce the

executable file only if none of the .o object files were compiled with f95 . See also

Appendix C, “Compatibility with FORTRAN 77” on page 163.

Unrecognized Command-Line Arguments

Any arguments on the command-line that the compiler does not recognize are

interpreted as being possibly linker options, object program file names, or library

names.

The basic distinctions are:

■ Unrecognized options (with a -) generate warnings.

■ Unrecognized non-options (no -) generate no warnings. However, they are passed

to the linker and if the linker does not recognize them, they generate linker error

messages.

For example:

Note that in the first example, -bit is not recognized by f95 and the option is

passed on to the linker (ld), who tries to interpret it. Because single letter ld options

may be strung together, the linker sees -bit as -b -i -t , which are all legitimate

ld options! This may (or may not) be what the user expects, or intended.

demo% f95 -bit move.f <- -bit is not a recognized f95 option
f95: Warning: Option -bit passed to ld, if ld is invoked, ignored
otherwise
demo% f95 fast move.f <- The user meant to type -fast
ld: fatal: file fast: cannot open file; errno=2
ld: fatal: File processing errors. No output written to a.out
Chapter 2 Using Sun Fortran Compilers 23

In the second example, the user intended to type the f77/f95 option -fast but

neglected the leading dash. The compiler again passes the argument to the linker

which, in turn, interprets it as a file name.

These examples indicate that extreme care should be observed when composing

compiler command lines!

Modules (Fortran 95)

f95 automatically creates module interface files for each MODULEdeclaration

encountered in the source files, and searches for modules referenced by a USE
statement. For each module encountered (MODULEmodule_name), the compiler

generates a corresponding file, module_name.mod , in the current directory. For

example, f95 generates the module information file list.mod for the MODULE list
unit found on file mysrc.f95 .

The compiler searches the current directory for module files referenced in USE
statements. Module files must be compiled before compiling any source file

referencing a MODULEin a USEstatement. Directories can be added to the search

path with the -M command-line option. However, individual .mod files cannot be

specified directly on the command line.

The f95 compiler also creates an object file filename.o for every source file

containing MODULEstatement, and these implementation object files must be

included when linking to create an executable. See page 167.

Directives

Use a source code directive, a form of Fortran comment, to pass specific information

to the compiler regarding special optimization or parallelization choices. Compiler

directives are also sometimes called pragmas. The compilers recognize a set of

general directives and parallelization directives. Fortran 95 also processes OpenMP

shared memory multiprocessing directives.

Directives unique to f95 are described in Appendix C. A complete summary of all

the directives recognized by f77 and f95 appears in Appendix E.

Note – Directives are not part of the Fortran standard.
24 Fortran User’s Guide • July 2001

General Directives

The various forms of a general Sun Fortran directive are:

The variable keyword identifies the specific directive. Additional arguments or

suboptions may also be allowed. (Some directives require the additional keyword

SUNor SPARC, as shown above.)

A general directive has the following syntax:

■ In column one, any of the comment-indicator characters c , C, ! , or *
■ For f95 free-format, ! is the only comment-indicator recognized (!$PRAGMA).

The examples in this chapter assume fixed-format.

■ The next seven characters are $PRAGMA, no blanks, in either uppercase or

lowercase

■ With f77 , directives using the ! comment-indicator character may appear in any

position on the line. With f95 , this is only possible for free-format source

programs.

Observe the following restrictions:

■ After the first eight characters, blanks are ignored, and uppercase and lowercase

are equivalent, as in Fortran text.

■ Because it is a comment, a directive cannot be continued, but you can have many

C$PRAGMAlines, one after the other, as needed.

■ If a comment satisfies the above syntax, it is expected to contain one or more

directives recognized by the compiler; if it does not, a warning is issued.

■ The C preprocessor, cpp , will expand macro symbol definitions within a comment

or directive line; the Fortran preprocessor, fpp , will not expand macros in

comment lines. fpp will recognize legitimate f77 and f95 directives and allow

limited substitution outside directive keywords. However, be careful with

directives requiring the keyword SUN. cpp will replace lower-case sun with a

predefined value. Also, if you define a cpp macro SUN, it might interfere with the

SUNdirective keyword. A general rule would be to spell those pragmas in mixed

case if the source will be processed by cpp or fpp , as in:

C$PRAGMA Sun UNROLL=3

C$PRAGMAkeyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SUNkeyword (a [, a] …) [, keyword (a [, a] …)] ,…

C$PRAGMA SPARCkeyword (a [, a] …) [, keyword (a [, a] …)] ,…
Chapter 2 Using Sun Fortran Compilers 25

The Fortran compilers recognize the following general directives:

The C Directive

The C() directive specifies that its arguments are external functions. It is equivalent

to an EXTERNALdeclaration except that unlike ordinary external names, the Fortran

compiler will not append an underscore to these argument names. See the C-Fortran

Interface chapter in the Fortran Programming Guide for more details.

The C() directive for a particular function should appear before the first reference to

that function in each subprogram that contains such a reference.

TABLE 2-2 Summary of General Fortran Directives

C Directive C$PRAGMA C(list)

Declares a list of names of external functions as C language

routines.

UNROLLDirective C$PRAGMA SUN UNROLL=n

Advises the compiler that the following loop can be unrolled to a

length n.

WEAKDirective C$PRAGMA WEAK(name[=name2])

Declares name to be a weak symbol, or an alias for name2.

OPTDirective C$PRAGMA SUN OPT=n

Set optimization level for a subprogram to n.

PIPELOOPDirective C$PRAGMA SUN PIPELOOP=n

Assert dependency in the following loop exists between iterations

n apart.

NOMEMDEPDirective C$PRAGMA SUN NOMEMDEP

Assert there are no memory dependencies in the following loop.

PREFETCHDirectives C$PRAGMA SPARC_PREFETCH_READ_ONCE(name)
C$PRAGMA SPARC_PREFETCH_READ_MANY(name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE(name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY(name)

Request compiler generate prefetch instructions for references to

name. (Requires -xprefetch option.)
26 Fortran User’s Guide • July 2001

Example - compiling ABCand XYZ for C:

The UNROLLDirective

The UNROLLdirective requires that you specify SUNafter C$PRAGMA.

The C$PRAGMA SUN UNROLL=n directive instructs the compiler to unroll the

following loop n times during its optimization pass. (The compiler will unroll a loop

only when its analysis regards such unrolling as appropriate.)

n is a positive integer. The choices are:

■ If n=1, the optimizer may not unroll any loops.

■ If n>1, the optimizer may unroll loops n times.

If any loops are actually unrolled, the executable file becomes larger. For further

information, see the Fortran Programming Guide chapter on performance and

optimization.

Example - unrolling loops two times:

The WEAKDirective

The WEAKdirective defines a symbol to have less precedence than an earlier

definition of the same symbol. This pragma is used mainly in sources files for

building libraries. The linker does not produce an error message if it is unable to

resolve a weak symbol.

WEAK(name1) defines name1 to be a weak symbol. The linker does not produce an

error message if it does not find a definition for name1.

WEAK(name1=name2) defines name1 to be a weak symbol and an alias for name2.

If your program calls but does not define name1, the linker uses the definition from

the library. However, if your program defines its own version of name1, then the

program’s definition is used and the weak global definition of name1 in the library is

EXTERNAL ABC, XYZ
C$PRAGMA C(ABC, XYZ)

C$PRAGMA SUN UNROLL=2

C$PRAGMA WEAK (name1 [= name2])
Chapter 2 Using Sun Fortran Compilers 27

not used. If the program directly calls name2, the definition from library is used; a

duplicate definition of name2 causes an error. See the Solaris Linker and Libraries
Guide for more information.

The OPTDirective

The OPTdirective requires that you specify SUNafter C$PRAGMA.

The OPTdirective sets the optimization level for a subprogram, overriding the level

specified on the compilation command line. The directive must appear immediately

before the target subprogram, and only applies to that subprogram. For example:

When the above is compiled with an f77 command that specifies -O4 , the directive

will override this level and compile the subroutine at -O2 . Unless there is another

directive following this routine, the next subprogram will be compiled at -O4 .

The routine must also be compiled with the -xmaxopt [=n] option for the directive

to be recognized. This compiler option specifies a maximum optimization value for

PRAGMA OPTdirectives: if a PRAGMA OPTspecifies an optimization level greater

than the -xmaxopt level, the -xmaxopt level is used.

The NOMEMDEPDirective

The NOMEMDEPdirective requires that you specify SUNafter C$PRAGMA.

This directive must appear immediately before a DO loop. It asserts to the optimizer

that there are no memory-based dependencies within an iteration of the loop to

inhibit parallelization. Requires -parallel or -explicitpar options..

The PIPELOOP=n Directive

The PIPELOOP=n directive requires that you specify SUNafter C$PRAGMA.

This directive must appear immediately before a DO loop. n is a positive integer

constant, or zero, and asserts to the optimizer a dependence between loop iterations.

A value of zero indicates that the loop has no inter-iteration (loop-carried)

C$PRAGMA SUN OPT=2
SUBROUTINE smart(a,b,c,d,e)
...etc
28 Fortran User’s Guide • July 2001

dependencies and can be freely pipelined by the optimizer. A positive n value

implies that the I-th iteration of the loop has a dependency on the (I-n)-th iteration,

and can be pipelined at best for only n iterations at a time.

For more information on optimization, see the Fortran Programming Guide.

The PREFETCHDirectives

The -xprefetch option flag, page 114, enables a set of PREFETCHdirectives that

advise the compiler to generate prefetch instructions for the specified data element.

Prefetch instructions are only available on UltraSPARC platforms.

See also the C User’s Guide, or the SPARC Architecture Manual, Version 9 for further

information about prefetch instructions.

Parallelization Directives

Parallelization directives explicitly request the compiler to attempt to parallelize the

DOloop or the region of code that follows the directive. The syntax differs from

general directives. Parallelization directives are only recognized when compilation

options -parallel or -explicitpar are used. Details regarding Fortran

parallelization can be found in the Fortran Programming Guide.

Note – Fortran parallelization features require a Forte for High Performance Computing
(HPC) license.

C We know that the value of K is such that there can be no
C cross-iteration dependencies (E.g. K>N)
C$PRAGMA SUN PIPELOOP=0

DO I=1,N
A(I)=A(I+K) + D(I)

 B(I)=B(I) + A(I)
 END DO

C$PRAGMA SPARC_PREFETCH_READ_ONCE(name)
C$PRAGMA SPARC_PREFETCH_READ_MANY(name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE(name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY(name)
Chapter 2 Using Sun Fortran Compilers 29

The Fortran compilers support three styles of parallelization directives, Sun, Cray,

and OpenMP.

Sun style parallelization directives are the default (explicitly selected with the

compiler option -mp=sun). Sun directives have the directive sentinel $PAR.

Cray style parallelization directives, enabled by the -mp=cray compiler option,

have the sentinel MIC$. Interpretations of similar directives differ between Sun and

Cray styles. See the chapter on parallelization in the Fortran Programming Guide for

details.

Fortran 95 also accepts OpenMP parallelization directives, described in the next

section.

Sun/Cray parallelization directives have the following syntax:

■ The first character must be in column one.

■ The first character can be any one of c , C, * , or ! .

■ The next four characters may be either $PAR (Sun style), or MIC$ (Cray style),

without blanks, and in either upper or lower case.

■ Next, the directive keyword and qualifiers, separated by blanks. The explicit

parallelization directive keywords are:

TASKCOMMON, DOALL, DOSERIAL, and DOSERIAL*

Each parallelization directive has its own set of optional qualifiers that follow the

keyword.

Example: Specifying a loop with a shared variable:

See Appendix E for a summary, and the Fortran Programming Guide for details about

parallelization and these directives.

OpenMP Directives

The Sun WorkShop 6 Fortran 95 compiler recognizes the OpenMP Fortran shared

memory multiprocessing API as specified by the OpenMP Architecture Review

Board. See the OpenMP website for details: http://www.openmp.org/ .

You must compile with the command-line option -openmp , to enable OpenMP

directives. (-openmp is a macro flag that invokes the compiler options required by

OpenMP; see page 79.)

A summary of OpenMP directives appears in Appendix E.

C$PAR DOALL SHARED(yvalue) Sun style
CMIC$ DOALL SHARED(yvalue) Cray style
30 Fortran User’s Guide • July 2001

OpenMP directives can be used in conjunction with either Sun or Cray style

parallelization directives, as long as these different directives are not nested within

each other. To enable OpenMP with Sun or Cray directives, use -mp=openmp,sun or

-mp=openmp,cray (no spaces), respectively. (See page 73)

f95: Library Interfaces and
system.inc
The Fortran 95 compiler provides an include file, system.inc , that defines the

interfaces for most non-intrinsic library routines. Declare this include file to insure

that functions you call and their arguments are properly typed, especially when

default data types are changed with -xtypemap .

For example, the following may produce an arithmetic exception because function

getpid() is not explicitly typed:

The getpid() routine returns an integer value but the compiler assumes it returns

a real value if no explicit type is declared for the function. This value is further

converted to integer, most likely producing a floating-point error.

To correct this you should explicitly type getuid() and functions like it that you

call:

Problems like these can be diagnosed with the -Xlist (global program checking)

option. The Fortran 95 include file ‘system.inc’ provides explicit interface

definitions for these routines.

integer(4) mypid
mypid = getpid()
print *, mypid

integer(4) mypid, getpid
mypid = getpid()
print *, mypid

include 'system.inc'
integer(4) mypid
mypid = getpid()
print *, mypid
Chapter 2 Using Sun Fortran Compilers 31

Including system.inc in program units calling routines in the Fortran library will

automatically define the interfaces for you, and help the compiler diagnose type

mismatches. (See the Fortran Library Reference for more information.)

Compiler Usage Tips

The next sections suggest a number of ways to use the Sun Fortran compilers

efficiently. A complete compiler options reference follows in the next chapter.

Determining Hardware Platform

Some compiler flags allow the user to tune code generation to a specific set of

hardware platform options. The utility command fpversion displays the hardware

platform specifications for the native processor:

The values printed depend on the load on the system at the moment fpversion is

called.

See fpversion (1) and the Numerical Computation Guide for details.

Using Environment Variables

You can specify options by setting the FFLAGSor OPTIONSvariables.

demo% fpversion
A SPARC-based CPU is available.
 CPU’s clock rate appears to be approximately 467.1 MHz.
 Kernel says CPU’s clock rate is 480.0 MHz.
 Kernel says main memory’s clock rate is 120.0 MHz.

 Sun-4 floating-point controller version 0 found.
 An UltraSPARC chip is available.
 FPU’s frequency appears to be approximately 492.7 MHz.

 Use "-xtarget=ultra2i -xcache=16/32/1:2048/64/1" code-
generation option.

 Hostid = hardware_host_id.
32 Fortran User’s Guide • July 2001

Either FFLAGSor OPTIONScan be used explicitly in the command line. When you

are using the implicit compilation rules of make, FFLAGSis used automatically by

the make program.

Example: Set FFLAGS: (C Shell)

Example: Use FFLAGSexplicitly:

When using make, if the FFLAGSvariable is set as above and the makefile’s

compilation rules are implicit, that is, there is no explicit compiler command line, then

invoking make will result in a compilation equivalent to:

f77 -fast -Xlist files...

make is a very powerful program development tool that can easily be used with all

Sun compilers. See the make(1) man page and the Program Development chapter in the

Fortran Programming Guide.

Note – Default implicit rules assumed by make may not recognize files with

extensions .f95 and .mod (Fortran 95 Module files). See the Fortran Programming
Guide and the Fortran 95 readme file for details.

Memory Size

A compilation may need to use a lot of memory. This will depend on the

optimization level chosen and the size and complexity of the files being compiled.

On SPARC platforms, if the optimizer runs out of memory, it tries to recover by

retrying the current procedure at a lower level of optimization and resumes

subsequent routines at the original level specified in the -On option on the command

line.

A workstation should have at least 24 megabytes of memory; 32 megabytes are

recommended. Memory usage depends on the size of each procedure, the level of

optimization, the limits set for virtual memory, the size of the disk swap file, and

various other parameters.

Compiling a single source file containing many routines could cause the compiler to

run out of memory or swap space.

demo% setenv FFLAGS '-fast -Xlist'

demo% f95 $FFLAGS any.f
Chapter 2 Using Sun Fortran Compilers 33

If the compiler runs out of memory, try reducing the level of optimization, or split

multiple-routine source files into files with one routine per file, using fsplit (1).

Swap Space Limits

The SunOS™ operating system command, swap -s , displays available swap space.

See swap(1M).

Example: Use the swap command:

To determine the actual real memory:

Increasing Swap Space

Use mkfile (1M) and swap(1M) to increase the size of the swap space on a

workstation. You must become superuser to do this. mkfile creates a file of a

specific size, and swap -a adds the file to the system swap space:

Control of Virtual Memory

Compiling very large routines (thousands of lines of code in a single procedure) at

optimization level -O3 or higher may require additional memory that could degrade

compile-time performance. You can control this by limiting the amount of virtual

memory available to a single process.

In a sh shell, use the ulimit command. See sh (1).

demo% swap -s
total: 40236k bytes allocated + 7280k reserved = 47516k used,
1058708k available

demo% /usr/sbin/dmesg | grep mem
mem = 655360K (0x28000000)
avail mem = 602476544

demo# mkfile -v 90m /home/swapfile
/home/swapfile 94317840 bytes
demo# /usr/sbin/swap -a /home/swapfile
34 Fortran User’s Guide • July 2001

Example: Limit virtual memory to 16 Mbytes:

In a csh shell, use the limit command. See csh (1).

Example: Limit virtual memory to 16 Mbytes:

Each of these command lines causes the optimizer to try to recover at 16 Mbytes of

data space.

This limit cannot be greater than the system’s total available swap space and, in

practice, must be small enough to permit normal use of the system while a large

compilation is in progress. Be sure that no compilation consumes more than half the

space.

Example: With 32 Mbytes of swap space, use the following commands:

In a sh shell:

In a csh shell:

The best setting depends on the degree of optimization requested and the amount of

real and virtual memory available.

In 64-bit Solaris environments, the soft limit for the size of an application data

segment is 2 Gbytes. If your application needs to allocate more space, use the shell’s

limit or ulimit command to remove the limit.

For csh use:

demo$ ulimit -d 16000

demo% limit datasize 16M

demo$ ulimit -d 1600

demo% limit datasize 16M

demo% limit datasize unlimited
Chapter 2 Using Sun Fortran Compilers 35

For sh or ksh , use:

See the Solaris 64-bit Developer’s Guide for more information.

demo$ ulimit -d unlimited
36 Fortran User’s Guide • July 2001

CHAPTER 3

Fortran Compiler Options

This chapter details the command–line options for the f77 and f95 compilers.

■ A description of the syntax used for compiler option flags starts on page 37

■ Summaries of options arranged by functionality starts on page 39.

■ The complete reference detailing each compiler option flag starts on page 45.

Some options are not available on both compilers (f77 or f95). Check the reference

section for availability.

Command Syntax

The general syntax of the compiler command line is:

Items in square brackets indicate optional parameters. The brackets are not part of

the command. The options are a list of option keywords prefixed by dash (–). Some

keyword options take the next item in the list as an argument. The list_of_files is a list

of source, object, or library file names separated by blanks. Also, there are some

options that must appear after the list of source files, and these could include

additional lists of files (for example, -B , -l , and -L).

f77 [options] list_of_files additional_options
f95 [options] list_of_files additional_options
37

Options Syntax

Typical compiler option formats are:

The following typographical conventions are used when describing the individual

options:

Brackets, pipe, and ellipsis are meta characters used in the descriptions of the options

and are not part of the options themselves.

Some general guidelines for options are:

■ –l x is the option to link with library lib x.a . It is always safer to put –l x after

the list of file names to insure the order libraries are searched.

TABLE 3-1 Options Syntax

Syntax Format Example

–flag –g

–flagvalue –Dnostep

–flag=value –xunroll=4

–flag value –o outfile

TABLE 3-2 Typographic Notations for Options

Notation Meaning Example: Text/Instance

[] Square brackets contain arguments that are

optional.

 –O[n]
 –O4, –O

{ } Curly brackets contain a set of choices for a

required option.

 –d{y|n}
 –dy

| The “pipe” or “bar” symbol separates

arguments, only one of which may be chosen.

 –B{dynamic|static}
 –Bstatic

: The colon, like the comma, is sometimes used

to separate arguments.

 –R dir[: dir]
 –R/local/libs:/U/a

... The ellipsis indicates omission in a series. –xinline= f1[,...fn]
 –xinline=alpha,dos
38 Fortran User’s Guide • July 2001

■ In general, processing of the compiler options is from left to right, allowing

selective overriding of macro options (options that include other options).

■ The above rule does not apply to linker options.

■ However, some options, –I , –L , and –R for example, accumulate values rather

than override previous values when repeated on the same command line.

Source files, object files, and libraries are compiled and linked in the order in which

they appear on the command line.

Options Summary

In this section, the compiler options are grouped by function to provide an easy

reference. The details will be found on the pages in the following sections, as

indicated.

The following table summarizes the f77 and f95 compiler options by functionality.

The table does not include obsolete and legacy option flags. Some flags serve more

than one purpose and appear more than once.

TABLE 3-3 Compiler Options Grouped by Functionality

Function Option Flag

Compilation Mode:

Compile only; do not produce an executable file -c

Show commands built by the driver but do not compile -dryrun

Specify name of object, library, or executable file to write -o filename

Compile and generate only assembly code -S

Strip symbol table from executable -s

Suppress compiler messages, except error messages -silent

Define path to directory for temporary files -temp= directory

Show elapsed time for each compilation phase -time

Show version number of compiler and its phases -V

Verbose messages -v

Compiled Code:

Add/suppress trailing underscores on external names -ext_names= x

Inline specified user functions -inline= list
Chapter 3 Fortran Compiler Options 39

Compile position independent code -KPIC/-kpic

Inline certain math library routines -libmil

STOP returns integer status value to shell -stop_status[= yn]

Specify code address space -xcode= x

Enable UltraSPARC prefetch instructions -xprefetch[= x]

Specify use of optional registers -xregs= x

Specify default data mappings -xtypemap= x

Data Alignment:

Specify alignment of data in COMMON blocks -aligncommon[= n]

Force COMMON block data alignment to allow double

word fetch/store

-dalign

Force alignment of all data on 8-byte boundaries -dbl_align_all

Align COMMON block data on 8-byte boundaries -f

Specify memory alignment and behavior -xmemalign[= ab]

Debugging:

Enable runtime subscript range checking -C

Compile for debugging -g

Compile for browsing with Sun WorkShop source browser -sb, -sbfast

Flag use of undeclared variables -u

Compile for Sun WorkShop Performance Analyzer -xF

Generate source listings -Xlist x

Enable debugging without object files -xs

Diagnostics:

Flag use of non-standard extensions -ansi

Suppress specific error messages -erroff= list

Display error tag names with error messages -errtags

Show summary of compiler options -flags, -help

Show version number of the compiler and its phases -V

Verbose messages -v

Verbose parallelization messages -vpara

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
40 Fortran User’s Guide • July 2001

Show/suppress warning messages -w n

Enable runtime task common check -xcommonchk

Display compiler README file -xhelp=readme

Licensing:

Show license server information -xlicinfo

Linking and Libraries:

Allow/require dynamic/static libraries -B x

Allow only dynamic/static library linking -dy, -dn

Build a dynamic (shared object) library -G

Assign name to dynamic library -h name

Add directory to library search path -L dir

Link with library lib name.a or lib name.so -l name

Build runtime library search path into executable -R dir

Disable use of incremental linker, ild -xildoff

Link with optimized math library -xlibmopt

Link with Sun Performance Library -xlic_lib=sunperf

Link editor option -z x

Generate pure libraries with no relocations -ztext

Numerics and Floating-Point:

Use non-standard floating-point preferences -fnonstd

Select SPARC non-standard floating point -fns

Enable runtime floating-point overflow during input -fpover

Select IEEE floating-point rounding mode -fpround= r

Select floating-point optimization level -fsimple= n

Select floating-point trapping mode -ftrap= t

Promote single precision constants to double precision -r8const

Enable interval arithmetic and set the appropriate floating-

point environment (includes -xinterval)

-xia[= e]

Enable interval arithmetic extensions -xinterval[= e]

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
Chapter 3 Fortran Compiler Options 41

Optimization and Performance:

Analyze loops for data dependencies -depend

Optimize using a selection of options -fast

Specify optimization level -On

Pad data layout for efficient use of cache -pad[= p]

Allocate local variables on the memory stack -stackvar

Enable loop unrolling -unroll[= m]

Enable optimization across source files -xcrossfile[= n]

Invoke interprocedural optimizations pass -xipo[= n]

Set highest optimization level for #pragma OPT -xmaxopt[= n]

Assert that no memory-based traps will occur -xsafe=mem

Do no optimizations that increase code size -xspace

Generate calls to vector library functions automatically -xvector[= yn]

Parallelization:
(Note: Fortran parallelization features require a Forte for High Performance Computing license).

Enable automatic parallelization of DO loops -autopar

Enable parallelization of loops explicitly marked with

directives

-explicitpar

Show loop parallelization information -loopinfo

Specify which style of directives to accept: Sun, Cray,

OpenMP

-mp=v

Compile for hand-coded multithreaded programming -mt

Accept OpenMP API directives and set appropriate

environment (macro)

-openmp

Parallelize loops with -autopar -explicitpar -depend
combination

-parallel

Recognize reduction operations in loops with automatic

parallelization

-reduction

Verbose parallelization messages -vpara

Source Code:

Define preprocessor symbol -D name[= val]

Undefine preprocessor symbol -U name

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
42 Fortran User’s Guide • July 2001

Commonly Used Options

The Sun Fortran compilers have many features that are selectable by optional

command–line parameters. The short list below of commonly used options is a good

place to start.

Accept extended (132 character) source lines -e

Apply preprocessor to .F and/or .F90 and .F95 files but

do not compile

-F

Accept fixed-format input (f95) -fixed

Preprocess all source files with the fpp preprocessor -fpp

Accept free-format input (f95) -free

Add directory to include file search path -I dir

Add directory to module search path -Mdir

Recognize upper and lower case as distinct -U

Select preprocessor, cpp or fpp , to use -xpp[={fpp|cpp}]

Allow recursive subprogram calls -xrecursive

Target Platform:

Optimize for the host system -native

Specify target platform instruction set for the optimizer -xarch= a

Specify target cache properties for optimizer -xcache= a

Specify target processor for the optimizer -xchip= a

Specify target platform for the optimizer -xtarget= a

TABLE 3-4 Commonly Used Options

Action Option

Debug—global program checking across routines for

consistency of arguments, commons, and so on.

–Xlist

Debug—produce additional symbol table information to enable

the dbx and Sun WorkShop debugging.

–g

Performance—invoke the optimizer to produce faster running

programs.

–O[n]

TABLE 3-3 Compiler Options Grouped by Functionality (Continued)

Function Option Flag
Chapter 3 Fortran Compiler Options 43

Backward Compatibility and Legacy Options

The following options are provided for backward compatibility with earlier compiler

releases, and certain Fortran legacy capabilities.

Use of these option flags is not recommended and should be avoided.

Performance—Produce efficient compilation and run times for

the native platform, using a set of predetermined options.

–fast

Dynamic (–Bdynamic) or static (–Bstatic) library binding. –Bx

Compile only—Suppress linking; make a .o file for each source

file.

–c

Output file—Name the executable output file nm instead of

a.out .

–o nm

Source code—Compile fixed format Fortran 77 code with f95 . -fixed

TABLE 3-5 Backward Compatibility Options

Action Option

Double default data sizes: use -xtypemap instead. -r8 or -dbl

Allow assignment to constant arguments. –copyargs

Treat hollerith constant as character or typeless in

call argument lists.

-xhasc[={yes|no}]

External names—make external names without

underscores.

–ext_names= e

Nonstandard arithmetic—allow nonstandard

arithmetic.

–fnonstd

Optimize performance for the host system. –native

Output—use old style list–directed output. –oldldo

DOloops—use one trip DOloops. –onetrip

Compile for SPARC V7 architecture -cg89

Compile for SPARC V8 architecture -cg92

TABLE 3-4 Commonly Used Options (Continued)

Action Option
44 Fortran User’s Guide • July 2001

Obsolescent Options

The following options are no longer supported by the f77 and f95 compilers. Their

appearance on a compiler command does not cause an error, and no action is taken;

they are ignored.

Options Reference

This section shows all f77 and f95 compiler command–line option flags, including

various risks, restrictions, caveats, interactions, examples, and other details. Each

description indicates platform availability of the option.

The following table indicates availability of an option:

Options that are not available for a compiler on a particular platform will still be

accepted silently by the compiler. That is, the compiler will accept the option on the

command–line on that platform without issuing a warning, but the option does

nothing.

This options reference details each option flag.

TABLE 3-6 Obsolescent Options

Original Intention Option

Compile for analysis by looptool -Zlp

Compile for Thread Analyzer –Ztha

Disable exception traps (f95) –fnonstop

Legend Option Availability

f77 only available with f77

f95 only available with f95

f77/f95 available with both f77 and f95
Chapter 3 Fortran Compiler Options 45

–a

Profile by basic block using tcov , old style.

● f77/f95

This is the old style of basic block profiling for tcov . See –xprofile=tcov for

information on the new style of profiling and the tcov (1) man page for more details.

Also see the manual, Analyzing Program Performance with Sun WorkShop.

Insert code to count the times each basic block of statements is executed. This

invokes a runtime recording mechanism that creates one .d file for every .f file at

normal program termination. The .d file accumulates execution data for the

corresponding source file. The tcov (1) utility can then be run on the source file(s) to

generate statistics about the program. The summary output produced by tcov is

written to file.tcov for each source file. –pg and gprof are complementary to –a
and tcov .

If set at compile–time, the TCOVDIRenvironment variable specifies the directory

where the .d and .tcov files are located. If this variable is not set, then the .d files

remain in the same directory as the .f files.

The –xprofile=tcov and the –a options are compatible in a single executable.

That is, you can link a program that contains some files which have been compiled

with –xprofile=tcov , and others with –a . You cannot compile a single file with

both options.

If you compile and link in separate steps, and you compile with -a , then be sure to

link with -a .

For details, see the chapter Performance Profiling in the Fortran Programming Guide.

-aligncommon [=n]

Specify the alignment of data in common blocks.

● f77/f95

n may be 1, 2, 4, 8, or 16, and indicates the maximum alignment (in bytes) for data

elements within common blocks.

For example, -aligncommon=4 would align all common block data elements with

natural alignments of 4 bytes or more on 4-byte boundaries.

This option does not affect data with natural alignment smaller than the specified

size.

Without -aligncommon , the compilers align common block data on (at most) 4-byte

boundaries.
46 Fortran User’s Guide • July 2001

Specifying -aligncommon without a value defaults to 1 on all platforms: all

common block data aligns on byte boundaries (no padding between elements).

-aligncommon=16 reverts to -aligncommon=8 on platforms that are not 64-bit

enabled (platforms other than v9 , v9a , or v9b).

–ansi

Identify many nonstandard extensions.

● f77/f95

Warning messages are issued for any uses of non–standard Fortran 77 or Fortran 95

extensions in the source code.

–arg=local

Preserve actual arguments over ENTRYstatements.

● f77

When you compile a subprogram with alternate entry points with this option, f77
uses copy restore to preserve the association of dummy and actual arguments. For

example, the following program would require compilation with –arg=local to

insure proper execution:

Without this option, there is no guarantee that the correct values of the actual

arguments from the SETUPcall will be referenced when the routine is entered

through FXGAMMA. Code that relies on –arg=local is nonstandard.

 A = SETUP(ALPHA,BETA,GAMMA)
 ZORK = FXGAMMA(GCONST)
 ...
 FUNCTION SETUP(A1,A2,A3)
 ...
 ENTRY FXGAMMA(F)
 FXGAMMA = F*GAMMA
 ...
 RETURN
 END
Chapter 3 Fortran Compiler Options 47

–autopar

Enable automatic loop parallelization. Fortran parallelization features require a Forte for
HPC license.

● f77/f95

Finds and parallelizes appropriate loops for running in parallel on multiple

processors. Analyzes loops for inter–iteration data dependencies and loop

restructuring. If the optimization level is not specified –O3 or higher, it will

automatically be raised to –O3.

To improve performance, also specify the –stackvar option when using any of the

parallelization options, including –autopar .

Avoid -autopar if the program already contains explicit calls to the libthread
threads library. See note with –mt on page 74.

The -autopar option is not appropriate on a single–processor system, and the

compiled code will generally run slower.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.

If you use –autopar and compile and link in one step, the multithreading library

and the thread–safe Fortran runtime library will automatically be linked. If you use

-autopar and compile and link in separate steps, then you must also link with

-autopar to insure linking the appropriate libraries.

The -reduction option may also be useful with –autopar . Other parallelization

options are –parallel and –explicitpar .

Refer to the Fortran Programming Guide for more information on parallelization.

–B{ static | dynamic }

Prefer dynamic or require static library linking.

● f77/f95

No space is allowed between –B and dynamic or static . The default, without –B
specified, is –Bdynamic .

■ –Bdynamic : Prefer dynamic linking (try for shared libraries).

■ –Bstatic : Require static linking (no shared libraries).

Also note:
48 Fortran User’s Guide • July 2001

■ If you specify static , but the linker finds only a dynamic library, then the

library is not linked with a warning that the “library was not found.”

■ If you specify dynamic , but the linker finds only a static version, then that library

is linked, with no warning.

You can toggle –Bstatic and –Bdynamic on the command line. That is, you can

link some libraries statically and some dynamically by specifying -Bstatic and

-Bdynamic any number of times on the command line, as follows:

These are loader and linker options. Compiling and linking in separate steps with

-B x on the compile command will require it in the link step as well.

You cannot specify both -Bdynamic and -dn on the command line because -dn
disables linking of dynamic libraries.

In a 64-bit Solaris environment, many system libraries are available only as shared

dynamic libraries. These include libm.so and libc.so (libm.a and libc.a are

not provided). This means that –Bstatic and –dn may cause linking errors in 64-

bit Solaris environments. Applications must link with the dynamic libraries in these

cases.

See the Fortran Programming Guide for more information on static and dynamic

libraries.

–C

Check array references for out of range subscripts.

● f77/f95

Subscripting arrays beyond their declared sizes may result in unexpected results,

including segmentation faults. The –C option checks for possible array subscript

violations in the source code and during execution.

Specifying –C may make the executable file larger.

If the –C option is used, array subscript violations are treated as an error. If an array

subscript range violation is detected in the source code during compilation, it is

treated as a compilation error.

If an array subscript violation can only be determined at runtime, the compiler

generates range–checking code into the executable program. This may cause an

increase in execution time. As a result, it is appropriate to enable full array subscript

checking while developing and debugging a program, then recompiling the final

production executable without subscript checking.

f77 prog.f -Bdynamic -lwells -Bstatic -lsurface
Chapter 3 Fortran Compiler Options 49

–c

Compile only; produce object .o files, but suppress linking.

● f77/f95

Suppress linking. Compile a .o file for each source file. If only a single source file is

being compiled, the –o option can be used to specify the name of the .o file written.

–cg89

Compile for generic SPARC architecture. (Obsolete)

● f77/f95

This option is a macro for: –xarch=v7 –xchip=old –xcache=64/32/1 which is

equivalent to –xtarget=ss2 .

–cg92

Compile for SPARC V8 architecture. (Obsolete)

● f77/f95

This option is a macro for:

–xarch=v8 –xchip=super –xcache=16/32/4:1024/32/1 which is equivalent to

–xtarget=ss1000 .

–copyargs

Allow assignment to constant arguments.

● f77/f95

Allow a subprogram to change a dummy argument that is a constant. This option is

provided only to allow legacy code to compile and execute without a runtime error.

■ Without –copyargs , if you pass a constant argument to a subroutine, and then

within the subroutine try to change that constant, the run aborts.

■ With –copyargs , if you pass a constant argument to a subroutine, and then

within the subroutine change that constant, the run does not necessarily abort.

Code that aborts unless compiled with –copyargs is, of course, not Fortran

standard compliant. Also, such code is often unpredictable.
50 Fortran User’s Guide • July 2001

–Dname[=def]

Define symbol name for the preprocessor.

● f77/f95

This option only applies to .F , .F90 , and .F95 source files.

–Dname=def Define name to have value def

–Dname Define name to be 1

On the command line, this option will define name as if:

#define name[= def]

had appears in the source file. If no =def specified, the name name is defined as the

value 1. The macro symbol name is passed on to the preprocessor fpp (or cpp — see

the –xpp option) for expansion.

The predefined macro symbols have two leading underscores. The Fortran syntax

may not support the actual values of these macros—they should appear only in fpp
or cpp preprocessor directives.

■ The product version is predefined (in hex) in __SUNPRO_F77, __SUNPRO_F90,
and __SUNPRO_F95. For example __SUNPRO_F77is 0x600 for the Sun WorkShop

6 release.

■ The following macros are predefined on appropriate systems:

__sparc , __unix , __sun , __SVR4,

__SunOS_5_6, __SunOS_5_7, __SunOS_5_8

For instance, the value __sparc is defined on SPARC systems. You can use these

values in such preprocessor conditionals as the following:

#ifdef __sparc

■ The following are predefined with no underscores, but they may be deleted in a

future release: sparc , unix , sun

■ On SPARC V9 systems, the __sparcv9 macro is also defined.

The compilers use the fpp (1) preprocessor by default. Like the C preprocessor

cpp (1), fpp expands source code macros and enables conditional compilation of

code. Unlike cpp , fpp understands Fortran syntax, and is preferred as a Fortran

preprocessor. Use the –xpp=cpp flag to force the compiler to specifically use cpp
rather than fpp .
Chapter 3 Fortran Compiler Options 51

–dalign

Align COMMON block data and generate faster multi-word load/stores.

● f77/f95

This flag changes the data layout in COMMON blocks (and EQUIVALENCE classes),

and enables the compiler to generate faster multi-word load/stores for that data.

The data layout effect is that of the -f flag: double- and quad-precision data in

COMMON blocks and EQUIVALENCE classes are laid out in memory along their

“natural” alignment, which is on 8-byte boundaries (or on 16-byte boundaries for

quad-precision when compiling for 64-bit environments with -xarch=v9 or v9a).

The default alignment of data in COMMON blocks is on 4-byte boundaries. The

compiler is also allowed to assume natural alignment and generate faster multi-

word load/stores to reference the data.

Note – -dalign may result in nonstandard alignment of data, which could cause

problems with variables in EQUIVALENCEor COMMONand may render the program

non-portable if –dalign is required.

-dalign is a macro equivalent to: -xmemalign=8s -aligncommon=16. See

-aligncommon , page 46, and -xmemalign , page 111.

Using both –dbl (f77) and –dalign also causes default INTEGERvariables to be

8-byte aligned and 64-bits. -xtypemap is preferred over -dbl :

-xtypemap=real:64,double:128,integer:64

If you compile one subprogram with –dalign , compile all subprograms of the

program with –dalign . This option is included in the –fast option.

-db

Generate optional CIF file.

● f95

Generates an optional compiler information file (CIF) with the extension .T . This file

is sometimes needed by the Sun WorkShop Source Browser.
52 Fortran User’s Guide • July 2001

–dbl

Double the default size for REAL, INTEGER, DOUBLE, and COMPLEX.

● f77

Note – This option, and –r8 , is now considered obsolete and may be removed in

future releases. Use the more general –xtypemap option instead.

–dbl promotes the default byte size for REAL, INTEGER, DOUBLE, and COMPLEX
variables declared without an explicit byte size as follows:

This option applies to variables, parameters, constants, and functions.

Also, LOGICAL is treated as INTEGER, COMPLEXas two REALs, and DOUBLE
COMPLEXas two DOUBLEs.

Compare –dbl with –r8 : –dbl and –r8 can be expressed in terms of the more

general –xtypemap= option:

■ –dbl same as: –xtypemap=real:64,double:128,integer:64
■ –r8 same as: –xtypemap=real:64,double:128,integer:mixed

These options promote default DOUBLE PRECISIONdata to QUAD PRECISION(128

bits). This may be unwanted and may cause performance degradation. It might be

more appropriate to use –xtypemap=real:64,double:64,integer:64 instead

of –dbl in these cases.

For all of the floating point data types, –dbl works the same as –r8 ; using both -r8
and -dbl produces the same results as using only -dbl .

■ For INTEGERand LOGICAL data types, –dbl is different from -r8 :

■ –dbl allocates 8 bytes, and does 8–byte arithmetic

■ –r8 allocates 8 bytes, and does only 4–byte arithmetic (“mixed”)

TABLE 3-7 Default Data Sizes and –dbl (Bytes)

Without –dbl option
With –dbl

option

Data Type default SPARC

 INTEGER 4 8

 REAL 4 8

 DOUBLE 8 16
Chapter 3 Fortran Compiler Options 53

In general, if you compile one subprogram with –dbl , then be sure to compile all
subprograms of that program with –dbl . This is particularly important with

programs communicating through files with unformatted I/O — if one program is

compiled with –dbl , then the other program must similarly be compiled. Be also

aware that this option alters the default data size of function names, including calls

to library functions, unless the function name is typed explicitly with a data size.

–dbl_align_all= { yes |no}

Force alignment of data on 8–byte boundaries

● f77/f95

The value is either yes or no . If yes , all variables will be aligned on 8–byte

boundaries. Default is –dbl_align_all=no .

When compiling for 64-bit environments with -xarch=v9 or v9a , this flag will align

quad-precision data on 16-byte boundaries.

This flag does not alter the layout of data in COMMON blocks or user-defined

structures.

On SPARC, use with –dalign to enable added efficiency with multi-word load/

stores.

If used, all routines must be compiled with this flag.

–depend

Analyze loops for data dependencies.

● f77/f95

Analyze loops for data dependencies and do loop restructuring. This option will

raise the optimization level to O3 if no optimization level is specified, or if it is

specified less than O3. –depend is also included with –fast , -autopar and

-parallel . (See the Fortran Programming Guide.)

-dn

Disallow dynamic libraries. See -d {y|n}, page 55.

● f77/f95
54 Fortran User’s Guide • July 2001

–dryrun

Show commands built by f77 or f95 command-line driver, but do not compile.

● f77/f95

Useful when debugging, this option displays the commands and suboptions the

compiler will invoke to perform the compilation.

–d{ y | n}

Allow or disallow dynamic libraries for the entire executable

● f77/f95

■ –dy : Yes, allow dynamic/shared libraries.

■ –dn : No, do not allow dynamic/shared libraries.

The default, if not specified, is –dy .

Unlike –Bx, this option applies to the whole executable and need appear only once on

the command line.

–dy|–dn are loader and linker options. If you compile and link in separate steps

with these options, then you need the same option in the link step.

In a 64-bit Solaris environment, many system libraries are not available only as

shared dynamic libraries. These include libm.so and libc.so (libm.a and

libc.a are not provided). This means that –dn and –Bstatic may cause linking

errors in 64-bit Solaris environments. Applications must link with the dynamic

libraries in these cases.

–e

Accept extended length input source line.

● f77/f95

Accept source lines up to 132 characters long. The compiler pads on the right with

trailing blanks to column 132. If you use continuation lines while compiling with –e ,

then do not split character constants across lines, otherwise, unnecessary blanks may

be inserted in the constants.
Chapter 3 Fortran Compiler Options 55

–erroff= taglist

Suppress warning messages listed by tag name.

● f77/f95

Suppress the display of warning messages specified in the comma–separated list of

tag names taglist. If taglist consists of %none, no warnings are suppressed. If taglist
consists of %all , all warnings are suppressed (this is equivalent to the –w option.)

Example:

f77 -erroff=WDECL_LOCAL_NOTUSED ink.f

Use the –errtags option to see the tag names associated with warning messages.

–errtags [={ yes | no}]

Display the message tag with each warning message.

● f77/f95

With-errtags=yes , the compiler’s internal error tag name will appear along with

warning messages. The default is not to display the tag (-errtags=no).

-errtags alone stands for -errtags=yes .

–explicitpar

Parallelize loops or regions explicitly marked by Sun, Cray, and/or OpenMP

directives. Fortran parallelization features require a Forte for HPC license.

● f77/f95

The compiler will generate parallel code even if there are data dependencies in the

DO loop that would cause the loop to generate incorrect results when run in parallel.

With explicit parallelization, it is the user’s responsibility to correctly analyze loops

for data dependency problems before marking them with parallelization directives.

Parallelization is appropriate only on multiprocessor systems.

demo% f77 –errtags ink.f
ink.f:
 MAIN:
"ink.f", line 11: Warning: local variable "i" never used
(WDECL_LOCAL_NOTUSED) <– The warning message’s tag name
56 Fortran User’s Guide • July 2001

This option enables Sun, Cray, and/or OpenMP explicit parallelization directives.

DO loops immediately preceded by parallelization directives will have threaded

code generated for them.

Note: This option should not be used to compile programs that already do their own

multithreading with calls to the libthread library.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.

If you use –explicitpar and compile and link in one step, then linking

automatically includes the multithreading library and the thread–safe Fortran

runtime library. If you use –explicitpar and compile and link in separate steps,

then you must also link with –explicitpar .

To improve performance, also specify the –stackvar option when using any of the

parallelization options, including –explicitpar .

Use the -mp option (page 73) to select the style of parallelization directives enabled:

Sun, Cray, or OpenMP.

If the optimization level is not –O3 or higher, it is raised to –O3 automatically.

For details, see the Parallelization chapter in the Fortran Programming Guide.

–ext_names= e

Create external names with or without trailing underscores.

● f77/f95

e must be either plain or underscores . The default is underscores .

–ext_names=plain : Do not add trailing underscore.

–ext_names=underscores : Add trailing underscore.

An external name is a name of a subroutine, function, block data subprogram, or

labeled common. This option affects both the name of the routine’s entry point and

the name used in calls to it. This option may be used to allow Fortran 77 routines to

call and be called by other language routines.
Chapter 3 Fortran Compiler Options 57

–F

Invoke the source file preprocessor, but do not compile.

● f77/f95

Apply the fpp preprocessor to .F files (and .f95 files with f95) and write the

processed result on a file with the same name but with suffix changed to .f (or

.f95) , but do not compile.

Example:

f77 –F source.F

writes the processed source file to source.f

fpp is the default preprocessor for Fortran. The C preprocessor, cpp , can be selected

instead by specifying –xpp=cpp .

–f

Align data in COMMON blocks.

● f77/f95

Align double- and quad-precision data in COMMON blocks.

This flag changes the data layout in COMMON blocks and EQUIVALENCE classes:

double- and quad-precision data in COMMON blocks and EQUIVALENCE classes

are laid out in memory along their “natural” alignment, which is on 8-byte

boundaries (or on 16-byte boundaries for quad-precision when compiling for 64-bit

environments with -xarch=v9 or v9a). The default alignment of data in COMMON

blocks is on 4-byte boundaries.

-f is equivalent to -aligncommon=16.

Note – -f may result in nonstandard alignment of data, which could cause

problems with variables in EQUIVALENCEor COMMONand may render the program

non-portable if –f is required.

Using –dbl (f77) with –f aligns all 64–bit integer data on 8–byte boundaries as

well.

Compiling any part of a program with -f requires compiling all subprograms of that

program with -f .
58 Fortran User’s Guide • July 2001

By itself, this option does not enable the compiler to generate faster multi-word

fetch/store instructions on double and quad precision data. The –dalign option

does this and invokes –f as well. Use of –dalign is preferred over the older –f .

See –dalign , page 52. Because –dalign is part of the –fast option, so is –f .

–fast

Select options that optimize execution performance.

● f77/f95

Note – This option is defined as a particular selection of other options that is subject

to change from one release to another, and between compilers. Also, some of the

options selected by –fast might not be available on all platforms. Compile with the

-v (verbose) flag to see the expansion of -fast .

-fast provides high performance for certain benchmark applications. However, the

particular choice of options may or may not be appropriate for your application. Use

-fast as a good starting point for compiling your application for best performance.

But additional tuning may still be required. If your program behaves improperly

when compiled with -fast , look closely at the individual options that make up

-fast and invoke only those appropriate to your program that preserve correct

behavior.

Note also that a program compiled with -fast may show good performance and

accurate results with some data sets, but not with others. Avoid compiling with

-fast those programs that depend on particular properties of floating-point

arithmetic.

Because some of the options selected by -fast have linking implications, if you

compile and link in separate steps be sure to link with -fast also.

–fast selects the following options:

■ –dalign
■ –depend
■ –fns
■ –fsimple=2
■ –ftrap=%none (f77) or -ftrap=common (f95)
■ –libmil
■ –xtarget=native
■ –O5
■ –xlibmopt
■ -pad=local
■ -xvector=yes
■ -xprefetch=yes
Chapter 3 Fortran Compiler Options 59

Details about the options selected by –fast :

■ The -xtarget=native hardware target.

If the program is intended to run on a different target than the compilation

machine, follow the –fast with a code–generator option. For example:

f77 –fast -xtarget=ultra ...

■ The –O5 optimization level option. (This is a change from previous compiler releases
that set -O3 or -O4 with -fast .)

■ The –depend option analyzes loops for data dependencies and possible

restructuring.

■ The –libmil option for system–supplied inline expansion templates.

For C functions that depend on exception handling, follow -fast by -nolibmil
(as in -fast –nolibmil) . With –libmil , exceptions cannot be detected with

errno or matherr (3m).

■ The -fsimple=2 option for aggressive floating–point optimizations.

–fsimple=2 is unsuitable if strict IEEE 754 standards compliance is required. See

page 64. (This is a change from previous releases that set -fsimple=1 with -fast .)

■ The –dalign option to generate double loads and stores for double and quad

data in common blocks. Using this option can generate nonstandard Fortran data

alignment in common blocks.

■ The –xlibmopt option selects optimized math library routines.

■ -pad=local inserts padding between local variables, where appropriate, to

improve cache usage. (This was not set by -fast in previous releases.)

■ -xvector=yes transforms certain math library calls within DO loops to single

calls to a vectorized library equivalent routine with vector arguments. (This was
not set by -fast in previous releases.)

■ –fns selects non-standard SPARC floating-point arithmetic exception handling

and gradual underflow. See page 62.

■ -ftrap=%none to turn off all trapping for Fortran 77. Trapping on common

floating-point exceptions, -ftrap=common , is the used with Fortran 95.

■ -xprefetch=yes enables the compiler to generate hardware prefetch

instructions where appropriate.

It is possible to add or subtract from this list by following the –fast option with

other options, as in:

f95 –fast –fsimple=1 –xnolibmopt ...

which overrides the –fsimple=2 option and disables the –xlibmopt selected by

-fast .

Because -fast invokes -dalign , -fns , -fsimple=2 , programs compiled with

-fast can result in nonstandard floating-point arithmetic, nonstandard alignment

of data, and nonstandard ordering of expression evaluation. These selections might

not be appropriate for most programs.
60 Fortran User’s Guide • July 2001

–fixed

Specify fixed–format Fortran 95 source input files.

● f95

All source files on the command–line will be interpreted as f77 fixed format

regardless of filename extension. Normally, f95 interprets only .f files as fixed

format, .f95 as free format.

–flags

Synonym for –help .

● f77/f95

–fnonstd

Initialize floating–point hardware to non–standard preferences.

● f77/f95

This option is a synonym for the combination of the following option flags:

■ –fns –ftrap=common

Specifying –fnonstd is approximately equivalent to the following two calls at the

beginning of a Fortran main program.

The nonstandard_arithmetic() routine replaces the obsolete

abrupt_underflow() routine of earlier releases.

To be effective, the main program must be compiled with this option.

Using this option initializes the floating-point hardware to:

■ Abort (trap) on floating-point exceptions.

■ Flush underflow results to zero if it will improve speed, rather than produce a

subnormal number as the IEEE standard requires.

See –fns for more information about gradual underflow and subnormal numbers.

The –fnonstd option allows hardware traps to be enabled for floating–point

overflow, division by zero, and invalid operation exceptions. These are converted

into SIGFPE signals, and if the program has no SIGFPE handler, it terminates with a

dump of memory.

i=ieee_handler("set", "common", SIGFPE_ABORT)
call nonstandard_arithmetic()
Chapter 3 Fortran Compiler Options 61

For more information, see the ieee_handler(3m) and ieee_functions(3m) man pages, the

Numerical Computation Guide, and the Fortran Programming Guide.

–fns [={ no | yes }]

Select the SPARC nonstandard floating–point mode.

● f77/f95

The default is the SPARC standard floating–point mode (–fns=no). (See the

Floating–Point Arithmetic chapter of the Fortran Programming Guide.)

Optional use of =yes or =no provides a way of toggling the –fns flag following

some other macro flag that includes it, such as –fast . –fns is the same as

-fns=yes .

This option flag enables nonstandard floating-point mode when the program begins

execution. On some SPARC systems, specifying nonstandard floating-point mode

disables “gradual underflow”, causing tiny results to be flushed to zero rather than

producing subnormal numbers. It also causes subnormal operands to be silently

replaced by zero. On those SPARC systems that do not support gradual underflow

and subnormal numbers in hardware, use of this option can significantly improve

the performance of some programs.

Where x does not cause total underflow, x is a subnormal number if and only if |x| is

in one of the ranges indicated:

See the Numerical Computation Guide for details on subnormal numbers, and the

Fortran Programming Guide chapter Floating–Point Arithmetic for more information

about this and similar options. (Some arithmeticians use the term denormalized
number for subnormal number.)

The standard initialization of floating–point preferences is the default:

■ IEEE 754 floating–point arithmetic is nonstop (do not abort on exception).

■ Underflows are gradual.

To be effective, the main program must be compiled with this option.

TABLE 3-8 Subnormal REAL and DOUBLE

Data Type Range

REAL 0.0 < |x| < 1.17549435e–38

DOUBLE PRECISION 0.0 < |x| < 2.22507385072014e–308
62 Fortran User’s Guide • July 2001

–fpover [={ yes | no}]

Detect floating-point overflow in formatted input.

● f77/f95

With –fpover=yes specified, the I/O library will detect runtime floating-point

overflows in formatted input and return an error condition (1031). The default is no

such overflow detection (–fpover=no). –fpover is equivalent to –fpover=yes.

-fpp

Force preprocessing of input with fpp .

● f95

Pass all the input source files listed on the f95 command line through the fpp
preprocessor, regardless of file extension. (Normally, only files with .F , .F90 , or

.F95 extension are automatically preprocessed by fpp .) See also -xpp , page 113.

–free

Specify free–format source input files.

● f95

All source files on the command–line will be interpreted as f95 free format

regardless of filename extension. Normally, f95 interprets .f files as fixed format,

.f95 as free format.

–fround= r

Set the IEEE rounding mode in effect at startup.

● f77/f95

r must be one of: nearest , tozero , negative , positive .

The default is –fround=nearest .

To be effective, compile the main program with this option.

This option sets the IEEE 754 rounding mode that:

■ Can be used by the compiler in evaluating constant expressions.

■ Is established at runtime during the program initialization.

When r is tozero , negative , or positive , the option sets the rounding direction

to round-to-zero, round-to-negative-infinity, or round-to-positive-infinity, respectively,

when the program begins execution. When –fround is not specified,
Chapter 3 Fortran Compiler Options 63

-fround=nearest is used as the default and the rounding direction is round-to-
nearest. The meanings are the same as those for the ieee_flags function. (See the

Floating–Point Arithmetic chapter of the Fortran Programming Guide.)

–fsimple [=n]

Select floating–point optimization preferences.

● f77/f95

Allow the optimizer to make simplifying assumptions concerning floating–point

arithmetic. (See the Floating–Point Arithmetic chapter of the Fortran Programming
Guide.)

For consistent results, compile all units of a program with the same –fsimple
option.

If n is present, it must be 0, 1, or 2. The defaults are:

■ Without the –fsimple flag, the compiler defaults to –fsimple=0
■ With –fsimple alone, the compiler defaults to –fsimple=1

The different floating–point simplification levels are:

–fsimple=0

Permit no simplifying assumptions. Preserve strict IEEE 754 conformance.

–fsimple=1

Allow conservative simplifications. The resulting code does not strictly conform

to IEEE 754, but numeric results of most programs are unchanged.

With –fsimple=1 , the optimizer can assume the following:

■ IEEE 754 default rounding/trapping modes do not change after process

initialization.

■ Computations producing no visible result other than potential floating point

exceptions may be deleted.

■ Computations with Infinity or NaNs (“Not a Number”) as operands need not

propagate NaNs to their results; e.g., x*0 may be replaced by 0.

■ Computations do not depend on sign of zero.

With –fsimple=1 , the optimizer is not allowed to optimize completely without

regard to roundoff or exceptions. In particular, a floating–point computation

cannot be replaced by one that produces different results with rounding modes

held constant at run time.
64 Fortran User’s Guide • July 2001

–fsimple=2

Permit aggressive floating point optimizations. This can cause some programs to

produce different numeric results due to changes in the way expressions are

evaluated. In particular, the Fortran standard rule requiring compilers to honor

explicit parentheses around subexpressions to control expression evaluation order

may be broken with -fsimple=2 . This could result in numerical rounding

differences with programs that depend on this rule.

For example, with -fsimple=2 , the compiler may evaluate C-(A-B) as

(C-A)+B , breaking the standard’s rule about explicit parentheses, if the resulting

code is better optimized. The compiler might also replace repeated computations

of x/y with x*z, where z=1/y is computed once and saved in a temporary, to

eliminate the costly divide operations.

Programs that depend on particular properties of floating-point arithmetic should

not be compiled with -fsimple=2 .

Even with –fsimple=2 , the optimizer still is not permitted to introduce a

floating point exception in a program that otherwise produces none.

–fast sets -fsimple=2 .

–ftrap= t

Set floating–point trapping mode in effect at startup.

● f77/f95

t is a comma–separated list that consists of one or more of the following:

%all , %none, common, [no%]invalid , [no%]overflow , [no%]underflow ,

[no%]division , [no%]inexact .

-ftrap=common is a macro for

-ftrap=invalid,overflow,underflow,division .

Where the %is shown, it is a required character.

The f77 default is –ftrap=%none . The f95 default is -ftrap=common .

This option sets the IEEE 754 trapping modes that are established at program

initialization. Processing is left–to–right. The common exceptions, by definition, are

invalid, division by zero, and overflow. For example: –ftrap=overflow .

Example: –ftrap=%all,no%inexact means set all traps, except inexact .

The meanings for –ftrap= t are the same as for ieee_flags() , except that:

■ %all turns on all the trapping modes, and will cause trapping of spurious and

expected exceptions. Use commoninstead.
Chapter 3 Fortran Compiler Options 65

■ %none, the f77 default, turns off all trapping modes.

■ A no%prefix turns off that specific trapping mode.

To be effective, compile the main program with this option.

For further information, see the Floating–Point Arithmetic chapter in the Fortran
Programming Guide.

–G

Build a dynamic shared library instead of an executable file.

● f77/f95

Direct the linker to build a shared dynamic library. Without –G, the linker builds an

executable file. With –G, it builds a dynamic library. Use –o with –G to specify the

name of the file to be written. See the Fortran Programming Guide chapter Libraries for

details.

–g

Compile for debugging and performance analysis.

● f77/f95

Produce additional symbol table information for debugging with dbx (1) or the Sun

WorkShop debugging utility and for performance analysis with the Sun WorkShop

Performance Analyzer.

Although some debugging is possible without specifying –g, the full capabilities of

dbx and debugger are only available to those compilation units compiled with –g.

Some capabilities of other options specified along with –g may be limited. See the

dbx documentation for details.

The –g option makes –xildon the default incremental linker option when .o object

files appear on the command line (see page 106). That is, with –g , the compiler

default behavior is to automatically invoke ild in place of ld , unless the -G option

is present, or any source file is named on the command line.

To use the full capabilities of the Forte Developer 6 (Sun WorkShop 6) Performance

Analyzer, compile with -g . While some performance analysis features do not require

-g , you must compile with -g to view annotated source, some function level

information, and compiler commentary messages. (See the analyzer (1) man page

and Analyzing Program Performance With Sun WorkShop.)

The commentary messages generated with -g describe the optimizations and

transformations the compiler made while compiling your program. The messages,

interleaved with the source code, can be displayed by the er_src (1) command.
66 Fortran User’s Guide • July 2001

Note that commentary messages only appear if the compiler actually performed any

optimizations. You are more likely to see commentary messages when you request

high optimization levels, such as with -xO4 , or -fast .

–hname

Specify the name of the generated dynamic shared library.

● f77/f95

This option is passed on to the linker. For details, see the Solaris Linker and Libraries
Guide, and the Fortran Programming Guide chapter Libraries.

The –hname option records the name name to the shared dynamic library being

created as the internal name of the library. A space between –h and name is optional

(except if the library name is elp , for which the space will be needed). In general,

name must be the same as what follows the -o . Use of this option is meaningless

without also specifying –G.

Without the –hname option, no internal name is recorded in the library file.

If the library has an internal name, whenever an executable program referencing the

library is run the runtime linker will search for a library with the same internal name

in any path the linker is searching. With an internal name specified, searching for the

library at runtime linking is more flexible. This option can also be used to specify

versions of shared libraries.

If there is no internal name of a shared library, then the linker uses a specific path for

the shared library file instead.

–help

Display a summary list of compiler options.

● f77/f95

Displays a list of option summaries. See also –xhelp= h on page 105.

–I dir

Add dir to the INCLUDE file search path.

● f77/f95

Insert the directory dir at the start of the INCLUDE file search path. No space is

allowed between –I and dir. Invalid directories are ignored with no warning

message.
Chapter 3 Fortran Compiler Options 67

The include file search path is the list of directories searched for INCLUDE files—file

names appearing on preprocessor #include directives, or Fortran INCLUDE
statements.

Example: Search for INCLUDE files in /usr/app/include :

Multiple –I dir options may appear on the command line. Each adds to the top of the

search path list (first path searched).

The search order for relative path on INCLUDEor #include is:

1. The directory that contains the source file

2. The directories that are named in the –I dir options

3. The directories in the default list

The default list for –I dir depends on the installation directory for the compiler. In a

standard install, compiler software packages reside in the /opt directory; however,

systems administrators may decide to install packages in other locations. The default

search paths for INCLUDE files used by the compilers are:

■ for f77 : <install_dir>/SUNWspro/ <release>/include/f77 /usr/include
■ for f95 : <install_dir>/SUNWspro/ <release>/include/f90 /usr/include

where <install_dir> is the path to the installed packages (typically /opt in a normal

install), and <release> is a path that varies with each software release.

–i2

Set the default integer size to two bytes.

● f77

Set the default size to 2 bytes for integer and logical constants and variables declared

without an explicit size. (INTEGER*n Y still declares Y to be n bytes regardless of

the –i2 .) This option may degrade performance. It is generally recommended to

declare specific variables INTEGER*2 rather than use –i2 .

demo% f95 –I/usr/app/include growth.F
68 Fortran User’s Guide • July 2001

–i4

Set the default integer size to four bytes.

● f77

Set the default size to 4 bytes for integer and logical constants and variables declared

without an explicit size. (INTEGER*n Y still declares Y to be n bytes regardless of

the –i4 .).

Although 4 bytes is the default size for INTEGERand LOGICAL, this option can be

used for overriding settings made by options like –dbl and –r8 , which set these

defaults to 8:

–inline =[%auto][[,][no%] f1,...[no%] fn]

Enable or disable inlining of specified routines.

● f77/f95

Request the optimizer to inline the user–written routines named in the f1,...,fn list.

Prefixing a routine name with no%disables inlining of that routine.

Inlining is an optimization technique whereby the compiler effectively replaces a

subprogram reference such as a CALL or function call with the actual subprogram

code itself. Inlining often provides the optimizer more opportunities to produce

efficient code.

The lists are a comma–separated list of functions and subroutines. To inhibit inlining

of a function, prefix its name with no%.

Example: Inline the routines xbar, zbar, vpoint :

Following are the restrictions; no warnings are issued:

■ Optimization must be –O3 or greater.

■ The source for the routine must be in the file being compiled, unless

–xcrossfile is also specified.

■ The compiler determines if actual inlining is profitable and safe.

demo% f77 –dbl –i4 *.f
Command line warning: –i4 overrides integer part of –dbl
...

demo% f95 –O3 –inline=xbar,zbar,vpoint *.f
Chapter 3 Fortran Compiler Options 69

The appearance of -inline with -O4 disables the automatic inlining that the

compiler would normally perform, unless %auto is also specified . With -O4 , the

compilers normally try to inline all appropriate user–written subroutines and

functions. Adding –inline with –O4 may degrade performance by restricting the

optimizer’s inlining to only those routines in the list. In this case, use the %auto
suboption to enable automatic inlining at -O4 and -O5 .

In the example above, the user has enabled -O4 ’s automatic inlining while disabling

any possible inlining of the routine zpoint() that the compiler might attempt.

–Kpic

Synonym for –pic .

● f77/f95

–KPIC

Synonym for –PIC .

● f77/f95

–Ldir

Add dir to list of directories to search for libraries.

● f77/f95

Adds dir to the front of the list of object–library search directories. A space between

–L and dir is optional. This option is passed to the linker. See also –l x on page 71.

While building the executable file, ld(1) searches dir for archive libraries (.a files)

and shared libraries (.so files). ld searches dir before searching the default

directories. (See the Fortran Programming Guide chapter Libraries for information on

library search order.) For the relative order between LD_LIBRARY_PATHand –Ldir,
see ld(1).

Note – Specifying /usr/lib or /usr/ccs/lib with –Ldir may prevent linking the

unbundled libm . These directories are searched by default.

demo% f95 -O4 -inline=%auto,no%zpoint *.f
70 Fortran User’s Guide • July 2001

Example: Use -L dir to specify library search directories:

–l x

Add library lib x.a to linker’s list of search libraries.

● f77/f95

Pass –l x to the linker to specify additional libraries for ld to search for unresolved

references. ld links with object library lib x. If shared library lib x.so is available

(and –Bstatic or –dn are not specified), ld uses it, otherwise, ld uses static

library lib x.a. If it uses a shared library, the name is built in to a.out . No space is

allowed between –l and x character strings.

Example: Link with the library libV77 :

Use -l x again to link with more libraries.

Example: Link with the libraries liby and libz :

See also the Libraries chapter in the Fortran Programming Guide for information on

library search paths and search order.

–libmil

Inline selected libm library routines for optimization.

● f77/f95

There are inline templates for some of the libm library routines. This option selects

those inline templates that produce the fastest executable for the floating–point

options and platform currently being used.

For more information, see the man pages libm_single (3F) and libm_double (3F)

demo% f77 -Ldir1 -Ldir2 any.f

demo% f77 any.f –lV77

demo% f77 any.f –ly –lz
Chapter 3 Fortran Compiler Options 71

–loopinfo

Show parallelization results. The parallelization features of the Fortran compilers require a
Forte for HPC license.

● f77/f95

Show which loops were and were not parallelized with the –parallel , –autopar ,

or –explicitpar options. (Option –loopinfo must appear with one of these

parallelization options.)

–loopinfo displays a list of messages on standard error:

Use the error(1) utility with f77 compilations to merge this list with the source file to

produce an annotated source listing with each loop tagged as parallelized or not.

Example: Passing standard error to the error utility:

Be aware that error rewrites the input source file. For details on error , see the

error (1) man page and the Fortran Programming Guide chapter on debugging.

–Mdir

Add dir to directories searched for Fortran 95 modules.

● f95

Add dir to the list of directories to be searched for module files. No space appears

between the –Mand dir.

demo% f95 –o shalow –fast –parallel –loopinfo shalow.f
...
"shalow.f", line 325: not parallelized, not profitable (inlined loop)
"shalow.f", line 172: PARALLELIZED, and serial version generated
"shalow.f", line 173: not parallelized, not profitable
"shalow.f", line 181: PARALLELIZED, fused
"shalow.f", line 182: not parallelized, not profitable
"shalow.f", line 193: not parallelized, not profitable
"shalow.f", line 199: PARALLELIZED, and serial version generated
"shalow.f", line 200: not parallelized, not profitable
"shalow.f", line 226: PARALLELIZED, and serial version generated
"shalow.f", line 227: not parallelized, not profitable
... etc

demo$ f77 –autopar –loopinfo any.f 2>&1 | error options
72 Fortran User’s Guide • July 2001

The directories listed with –Mare searched after the current directory. Compiling a

source file containing a module generates a .mod module file for each MODULE
encountered. See in Appendix C, “Module Files” on page 167 for more information

about modules in Fortran 95.

–misalign

Allow misaligned data.

● f77

The –misalign option permits misaligned data in memory that would otherwise

produce an error. Particular uses of COMMONand EQUIVALENCEstatements may

cause data to be misaligned (with a compiler diagnostic). With -misalign , the

compiler will allow intentional misalignment and will not add padding in

COMMON blocks to insure proper data alignment. However, this seriously

degrades performance; recoding to eliminate the cause of data misalignment is a

better alternative.

If used, all routines in a program must be compiled with this option. If you compile

and link in separate steps, compiling with the -misalign option requires the option

on the link step as well.

-misalign is a macro equivalent to: -xmemalign=1i -aligncommon=1

See -xmemalign , page 111.

–mp={ %none| sun | cray | openmp}

Select the style for parallelization directives.

Fortran parallelization features require a Forte for HPC license.

● f77/f95

The default without specifying –mp is %none.

You can combine OpenMP directives with Sun or Cray directives in the same

compilation unit. But both Sun and Cray directives cannot both be active in the same

compilation unit. For example:

-mp=sun,openmp and

-mp=cray,openmp are permitted, but -mp=sun,cray is not.

-mp=sun Accept Sun–style directives: C$PARor !$PAR prefix.

-mp=cray Accept Cray–style directives: CMIC$ or !MIC$ prefix.

-mp=openmp Accept OpenMP Fortran directives (Available with f95 only).

-mp=%none Ignore all parallelization directives.
Chapter 3 Fortran Compiler Options 73

You must also specify -explicitpar (or -parallel) to enable parallelization. For

correctness, also specify -stackvar :

-explicitpar -stackvar -mp=openmp

When compiling for OpenMP, use the -openmp flag, which includes -mp=openmp
along with other flags required by OpenMP. See page 79.

A summary of these f77 /f95 directives appears in Appendix E in this manual. See

the Fortran Programming Guide for details.

–mt

Require thread–safe libraries.

● f77/f95

Require linking to thread–safe libraries. If you do your own low–level thread

management (for example, by calling the libthread library), compiling with –mt
prevents conflicts.

Use –mt if you mix Fortran with multithreaded C code that calls the libthread
library. See also the Solaris Multithreaded Programming Guide.

–mt is implied automatically when using the -autopar , -explicitpar , or

-parallel options.

Note the following:

■ A function subprogram that does I/O should not itself be referenced as part of an

I/O statement. Such recursive I/O may cause the program to deadlock with –mt .

■ In general, do not compile your own multithreaded code with -autopar ,

-explicitpar , or -parallel . The compiler-generated calls to the threads

library and the program’s own calls may conflict, causing unexpected results.

■ On a single–processor system, performance may be degraded with the –mt
option.

–native

Optimize performance for the host system. (Obsolete)

● f77/f95

This option is a synonym for –xtarget=native . The –fast option sets

-xtarget=native .
74 Fortran User’s Guide • July 2001

–noautopar

Disable automatic parallelization.

● f77/f95

Disables automatic parallelization invoked by –autopar earlier on the command

line.

–nodepend

Cancel –depend in command line.

● f77/f95

Cancel any –depend appearing earlier on the command line.

–noexplicitpar

Disable explicit parallelization.

● f77/f95

Disables explicit parallelization invoked by –explicitpar earlier on the command

line.

–nolib

Disable linking with system libraries.

● f77/f95

Do not automatically link with any system or language library; that is do not pass

any default –l x options on to ld . The normal behavior is to link system libraries

into the executables automatically, without the user specifying them on the

command line.

The –nolib option makes it easier to link one of these libraries statically. The system

and language libraries are required for final execution. It is your responsibility to

link them in manually. This option provides you with complete control.

For example, consider a program linked dynamically with libF77 that fails on a

remote system because it has no libF77 . With this option you can link the library

into your program statically.

Link libF77 statically and link libc dynamically with f77 :

demo% f77 –nolib any.f –Bstatic –lF77 –Bdynamic –lm –lc
Chapter 3 Fortran Compiler Options 75

Link libm statically and libc dynamically with f95 :

The order for the –l x options is important. Follow the order shown in the examples.

–nolibmil

Cancel –libmil on command line.

● f77/f95

Use this option after the -fast option to disable inlining of libm math routines:

–noqueue

Disable license queueing.

● f77/f95

With this option, if no software license is available to run the compiler, it returns

without queueing your request and without compiling. A nonzero environment

status is returned for testing in make files.

–noreduction

Disable –reduction on command line.

● f77/f95

This option disables –reduction .

–norunpath

Do not build a runtime shared library search path into the executable.

● f77/f95

The compiler normally builds into an executable a path that tells the runtime linker

where to find the shared libraries it will need. The path is installation dependent.

The -norunpath option prevents that path from being built in to the executable.

demo% f95 –nolib any.f95 –Bstatic –lm –Bdynamic –lc

demo% f77 –fast –nolibmil …
76 Fortran User’s Guide • July 2001

This option is helpful when libraries have been installed in some nonstandard

location, and you do not wish to make the loader search down those paths when the

executable is run at another site. Compare with –Rpaths.

See the Fortran Programming Guide chapter on Libraries for more information.

–O[n]

Specify optimization level.

● f77/f95

n can be 1, 2, 3, 4, or 5. No space is allowed between –O and n.

If -O[n] is not specified, only a very basic level of optimization limited to local

common subexpression elimination and dead code analysis is performed. A

program’s performance may be significantly improved when compiled with an

optimization level than without optimization. Use of –O (which sets –O3) or

–fast (which sets –O5) is recommended for most programs.

Each –On level includes the optimizations performed at the levels below it.

Generally, the higher the level of optimization a program is compiled with, the

better runtime performance obtained. However, higher optimization levels may

result in increased compilation time and larger executable files.

Debugging with –g does not suppress –On, but –On limits –g in certain ways; see the

dbx documentation.

The -O3 and -O4 options reduce the utility of debugging such that you cannot

display variables from dbx , but you can still use the dbx where command to get a

symbolic traceback.

If the optimizer runs out of memory, it attempts to proceed over again at a lower

level of optimization, resuming compilation of subsequent routines at the original

level.

For details on optimization, see the Fortran Programming Guide chapters Performance
Profiling, and Performance and Optimization.

–O

This is equivalent to –O3.

–O1

Provides a minimum of statement–level optimizations.

Use if higher levels result in excessive compilation time, or exceed available swap

space.
Chapter 3 Fortran Compiler Options 77

–O2

Enables basic block level optimizations.

This level usually gives the smallest code size. (See also –xspace .)

–O3 is preferred over –O2 unless –O3 results in unreasonably long compilation time,

exceeds swap space, or generates excessively large executable files.

–O3

Adds loop unrolling and global optimizations at the function level.

Usually –O3 generates larger executable files.

–O4

Adds automatic inlining of routines contained in the same file.

Usually –O4 generates larger executable files due to inlining.

The –g option suppresses the –O4 automatic inlining described above.

–xcrossfile increases the scope of inlining with –O4.

–O5

Attempt aggressive optimizations.

Suitable only for that small fraction of a program that uses the largest fraction of

compute time. –O5’s optimization algorithms take more compilation time, and may

also degrade performance when applied to too large a fraction of the source

program.

Optimization at this level is more likely to improve performance if done with profile

feedback. See –xprofile= p.

–o name

Specify the name of the executable file to be written.

● f77/f95

There must be a blank between –o and name. Without this option, the default is to

write the executable file to a.out . When used with –c , –o specifies the target .o
object file; with –G it specifies the target .so library file.
78 Fortran User’s Guide • July 2001

–oldldo

Select an earlier list–directed output style.

● f77

Omit the blank that starts each record for list–directed output. This is a change from

f77 releases 1.4 and earlier. The default behavior is to provide that blank, since the

Fortran Standard requires it. Note also the FORM='PRINT' option of OPEN. You can

compile parts of a program with -oldldo and other parts without it.

–onetrip

Enable one trip DOloops.

● f77/f95

Compile DOloops so that they are executed at least once. DOloops in standard

Fortran are not performed at all if the upper limit is smaller than the lower limit,

unlike some legacy implementations of Fortran.

-openmp

Enable explicit parallelization with Fortran 95 OpenMP directives. Fortran
parallelization features require a Forte for HPC license.

● f95

This option is a macro that combines these options:

-mp=openmp -explicitpar -stackvar -D_OPENMP=200011

OpenMP directives are summarized in Appendix E.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.

OpenMP requires the definition of the preprocessor symbol _OPENMPto have the

decimal value YYYYMM where YYYY and MM are the year and month designations

of the version of the OpenMP Fortran API that the implementation supports.
Chapter 3 Fortran Compiler Options 79

–p

Compile for profiling with the prof profiler.

● f77/f95

Prepare object files for profiling, see prof (1). If you compile and link in separate

steps, and also compile with the -p option, then be sure to link with the -p option.

–p with prof is provided mostly for compatibility with older systems. –pg profiling

with gprof is possibly a better alternative. See the Fortran Programming Guide
chapter on Performance Profiling for details.

–pad [=p]

Insert padding for efficient use of cache.

● f77/f95

This option inserts padding between arrays or character variables, if they are static

local and not initialized, or if they are in common blocks. The extra padding

positions the data to make better use of cache. In either case, the arrays or character

variables can not be equivalenced.

p, if present, must be either or both of:

Defaults for –pad :

■ Without the –pad [=p] option, the compiler does no padding.

■ With –pad , but without the =p, the compiler does both local and common

padding.

The following are equivalent:

■ f77 –pad any.f
■ f77 –pad=local,common any.f
■ f77 –pad=common,local any.f

The –pad [=p] option applies to items that satisfy the following criteria:

■ The items are arrays or character variables

■ The items are static local or in common blocks

For a definition of local or static variables, see –stackvar , page 88.

Restrictions on –pad=common:

■ Neither the arrays nor the character strings are equivalenced

local Add padding between adjacent local variables

common Add padding between variables in common blocks
80 Fortran User’s Guide • July 2001

■ If –pad=common is specified for compiling a file that references a common block,

it must be specified when compiling all files that reference that common block.

The option changes the spacing of variables within the common block. If one

program unit is compiled with the option and another is not, references to what

should be the same location within the common block might reference different

locations.

■ If –pad=common is specified, the declarations of common block variables in

different program units must be the same except for the names of the

variables.The amount of padding inserted between variables in a common block

depends on the declarations of those variables. If the variables differ in size or

rank in different program units, even within the same file, the locations of the

variables might not be the same.

■ If –pad=common is specified, EQUIVALENCEdeclarations involving common

block variables are flagged with a warning message and the block is not padded.

■ Avoid overindexing arrays in common blocks with -pad=common specified. The

altered positioning of adjacent data in a padded common block will cause

overindexing to fail in unpredictable ways.

–parallel

Parallelize with: –autopar, –explicitpar, –depend

Fortran parallelization features require a Forte for HPC license.

● f77/f95

Parallelize loops chosen automatically by the compiler as well as explicitly specified

by user supplied directives. Optimization level is automatically raised to –O3 if it is

lower.

To improve performance, also specify the –stackvar option when using any of the

parallelization options, including –autopar .

Use -mp , page 73, to select Sun, Cray, or f95 OpenMP style parallelization

directives.

Avoid -parallel if you do your own thread management. See the discussion of

-mt on page 74.

Parallelization options like –parallel are intended to produce executable

programs to be run on multiprocessor systems. On a single–processor system,

parallelization generally degrades performance.

To run a parallelized program in a multithreaded environment, you must set the

PARALLEL(or OMP_NUM_THREADS) environment variable prior to execution. This

tells the runtime system the maximum number of threads the program can create.

The default is 1. In general, set the PARALLELor OMP_NUM_THREADSvariable to the

available number of processors on the target platform.
Chapter 3 Fortran Compiler Options 81

If you use –parallel and compile and link in one step, then linking automatically

includes the multithreading library and the thread–safe Fortran runtime library. If

you use –parallel and compile and link in separate steps, then you must also link
with –parallel .

See the Fortran Programming Guide chapter Parallelization for further information.

–pg

Compile for profiling with the gprof profiler.

● f77/f95

Compile self–profiling code in the manner of –p , but invoke a runtime recording

mechanism that keeps more extensive statistics and produces a gmon.out file when

the program terminates normally. Generate an execution profile by running gprof .

See the gprof (1) man page and the Fortran Programming Guide for details.

Library options must be after the .f and .o files (–pg libraries are static).

If you compile and link in separate steps, and you compile with -pg , then be sure to

link with -pg .

–pic

Compile position–independent code for shared library.

● f77/f95

Use when compiling dynamic shared libraries. Each reference to a global datum is

generated as a dereference of a pointer in the global offset table. Each function call is

generated in program–counter–relative addressing mode through a procedure

linkage table.

■ The size of the global offset table is limited to 8Kb on SPARC.

■ Do not mix –pic and –PIC .

–pic is equivalent to –xcode=pic13 .

There are two nominal performance costs with –pic and –PIC :

■ A routine compiled with either –pic or –PIC executes a few extra instructions

upon entry to set a register to point at the global offset table used for accessing a

shared library’s global or static variables.

■ Each access to a global or static variable involves an extra indirect memory

reference through the global offset table. If the compile is done with –PIC , there

are two additional instructions per global and static memory reference.
82 Fortran User’s Guide • July 2001

When considering the above costs, remember that the use of -pic and

–PIC can significantly reduce system memory requirements, due to the effect of

library code sharing. Every page of code in a shared library compiled

–pic or –PIC can be shared by every process that uses the library. If a page of code

in a shared library contains even a single non–pic (that is, absolute) memory

reference, the page becomes nonsharable, and a copy of the page must be created

each time a program using the library is executed.

The easiest way to tell whether or not a .o file has been compiled with -pic or

–PIC is with the nmcommand:

A .o file containing position–independent code contains an unresolved external

reference to _GLOBAL_OFFSET_TABLE_, as indicated by the letter U.

To determine whether to use –pic or –PIC , use nmto identify the number of distinct

global and static variables used or defined in the library. If the size of

_GLOBAL_OFFSET_TABLE_is under 8,192 bytes, you can use -pic . Otherwise,

you must use –PIC .

When building shared dynamic libraries with –xarch=v9 (or v9a or v9b) in 64-bit

Solaris environments, the –pic or –PIC option, or their –xcode equivalents, must be

specified.

–PIC

Compile position–independent code, but with 32-bit addresses.

● f77/f95

This option is similar to -pic , but it allows the global offset table to span the range

of 32-bit addresses. Use it in those rare cases where there are too many global data

objects for -pic . Do not mix –pic and -PIC .

–PIC is equivalent to –xcode=pic32 .

When building shared dynamic libraries with –xarch=v9 (or v9a or v9b) in 64-bit

Solaris environments, the –pic or –PIC option, or their –xcode equivalents, must be

specified.

% nm file.o | grep _GLOBAL_OFFSET_TABLE_
U _GLOBAL_OFFSET_TABLE_
Chapter 3 Fortran Compiler Options 83

–Qoption pr ls

Pass options to compilation phase pr.

● f77/f95

Pass the suboption list ls to the compilation phase pr. There must be blanks

separating Qoption , pr, and ls. The Q can be uppercase or lowercase. The list is a

comma–delimited list of suboptions, with no blanks within the list. Each suboption

must be appropriate for that program phase, and can begin with a minus sign.

This option is provided primarily for debugging the internals of the compiler by

support staff. Use the LD_OPTIONSenvironment variable to pass options to the

linker. See the chapter on linking and libraries in the Fortran Programming Guide.

–qp

Synonym for –p .

● f77/f95

–R ls

Build dynamic library search paths into the executable file.

● f77/f95

With this option, the linker, ld(1), stores a list of dynamic library search paths into

the executable file.

ls is a colon–separated list of directories for library search paths. The blank between

–R and ls is optional.

Multiple instances of this option are concatenated together, with each list separated

by a colon.

The list is used at runtime by the runtime linker, ld.so . At runtime, dynamic

libraries in the listed paths are scanned to satisfy any unresolved references.

Use this option to let users run shippable executables without a special path option

to find needed dynamic libraries.

Building an executable file using –Rpaths adds directory paths to a default path that

is always searched last:

Standard Default Path: /opt/SUNWspro/lib

For more information, see the Libraries chapter in the Fortran Programming Guide, and

the Solaris Linker and Libraries Guide.
84 Fortran User’s Guide • July 2001

–r8

Double default byte size for REAL,INTEGER, DOUBLEand COMPLEX.

● f77

Note – -r8 and –dbl , are now considered obsolete and may be removed in future

releases. Use the more general –xtypemap option instead.

–r8 promotes the default byte size for REAL, INTEGER, DOUBLE, and COMPLEX
variables declared without an explicit byte size as follows:

This option applies to variables, parameters, constants, and functions.

Also, LOGICAL is treated as INTEGER, COMPLEXas two REALs, and DOUBLE
COMPLEXas two DOUBLEs.

–dbl and –r8 can be expressed in terms of the more general –xtypemap= option:

■ –dbl same as: –xtypemap=real:64,double:128,integer:64
■ –r8 same as: –xtypemap=real:64,double:128,integer:mixed

These options promote default DOUBLE PRECISIONdata to QUAD PRECISION(128

bits). This may be unwanted and may cause performance degradation. It might be

more appropriate to use –xtypemap=real:64,double:64,integer:64 instead

of –r8 in these cases.

■ For all of the floating point data types, –dbl works the same as –r8 ; using both

-r8 and -dbl produces the same results as using only -dbl .

■ For INTEGERand LOGICAL data types, –dbl differs from -r8 :

■ –dbl allocates 8 bytes, and does 8–byte arithmetic

■ –r8 allocates 8 bytes, and does only 4–byte arithmetic (“mixed”)

In general, if you compile one subprogram with –r8 , then be sure to compile all
subprograms of that program with –r8 . This also important with programs

communicating through unformatted I/O files — if one program is compiled with

TABLE 3-9 Default Data Sizes and –r8 (Bytes)

Without –r8 option
With –r8

option

Data Type default SPARC

 INTEGER 4 8

 REAL 4 8

 DOUBLE 8 16
Chapter 3 Fortran Compiler Options 85

-r8 , then the other program must be similarly compiled with -r8 . Be also aware

that this option alters the default data size of function names, including calls to

library functions, unless the function name is typed explicitly with a data size.

The impact on runtime performance may be great. With –r8 , an expression like

float = 15.0d0*float is evaluated in quadruple precision due to the declaration

of the constant.

If you select both –r8 and –i2 , the results are unpredictable.

-r8const

Promote single-precision constants to REAL*8 constants.

● f77/f95

All single-precision REALconstants are promoted to REAL*8. Double-precision

(REAL*8) constants are not changed. This option only applies to constants. To

promote both constants and variables use -xtypemap , page 121.

–reduction

Recognize reduction operations in loops.

● f77/f95

Analyze loops for reduction operations during automatic parallelization. There is

potential for roundoff error with the reduction.

A reduction operation accumulates the elements of an array into a single scalar value.

For example, summing the elements of a vector is a typical reduction operation.

Although these operations violate the criteria for parallelizability, the compiler can

recognize them and parallelize them as special cases when –reduction is specified.

See the Fortran Programming Guide chapter Parallelization for information on

reduction operations recognized by the compilers.

This option is usable only with the automatic parallelization options –autopar or

-parallel . It is ignored otherwise. Explicitly parallelized loops are not analyzed for

reduction operations.

Example: Automatically parallelize with reduction:

demo% f77 -parallel -reduction any.f
86 Fortran User’s Guide • July 2001

–S

Compile and only generate assembly code.

● f77/f95

Compile the named programs and leave the assembly–language output on

corresponding files suffixed with .s . No .o file is created.

–s

Strip the symbol table out of the executable file.

● f77/f95

This option makes the executable file smaller and more difficult to reverse engineer.

However, this option inhibits debugging with dbx or other tools, and overrides –g .

–sb

Produce table information for the Sun WorkShop source code browser.

● f77/f95

See Using Sun WorkShop for more information.

Note: -sb cannot be used on source files the compiler automatically passes through

the fpp or cpp preprocessors (that is, files with .F , .F90 , or .F95 extensions), or

used with the -F option.

–sbfast

Produce only source code browser tables.

● f77/f95

Produce only table information for the Sun WorkShop source code browser and stop.

Do not assemble, link, or make object files.

Note: -sbfast cannot be used on source files the compiler automatically passes

through the fpp or cpp preprocessors (that is, files with .F , .F90 , or .F95
extensions), or used with the -F option.
Chapter 3 Fortran Compiler Options 87

–silent

Suppress compiler messages.

● f77/f95

Use this option to suppress non–essential messages from the compiler; error and

warning messages are still issued. The default is to show file and entry names as

they are reached during the compilation.

–stackvar

Force all local variables to be allocated on the memory stack.

● f77/f95

Allocate on the memory stack all the local variables and arrays in routines, unless

otherwise specified. This option makes these variables automatic, rather than static,

and provides more freedom to the optimizer when parallelizing loops with calls to

subprograms.

Use of –stackvar is recommended with any of the parallelization options.

Variables and arrays are local, unless they are:

■ Arguments in a SUBROUTINEor FUNCTIONstatement (already on stack)

■ Global items in a COMMON, SAVE, or STATIC statement

■ Items initialized in a type statement or DATAstatement, such as:

REAL X/8.0/ or DATA X/8.0/

f77 only: Initializing a local variable in a DATAstatement after an executable reference

to that variable is an extension to f77 , and is flagged as an error when –stackvar
is used:

demo% cat stak.f
 real x
 x = 1.
 t = 0.
 print*, t
 data x/3.0/
 print *,x+t
 end
demo% f77 –o stak –stackvar stak.f
stak.f:
 MAIN:
"stak.f", line 5: Error: attempt to initialize an automatic
 variable: x
88 Fortran User’s Guide • July 2001

Putting large arrays onto the stack with –stackvar can overflow the stack causing

segmentation faults. Increasing the stack size may be required.

The initial thread executing the program has a main stack, while each helper thread

of a multithreaded program has its own thread stack.

The default stack size is about 8 Megabytes for the main stack and 1 Megabyte (2

Megabytes on SPARC V9 platforms) for each thread stack. The limit command

(with no parameters) shows the current main stack size. If you get a segmentation

fault using –stackvar , try increasing the main and thread stack sizes.

Example: Show the current main stack size:

Example: Set the main stack size to 64 Megabytes:

Example: Set each thread stack size to 8 Megabytes:

For further information of the use of –stackvar with parallelization, see the

Parallelization chapter in the Fortran Programming Guide. See csh (1) for details on the

limit command.

–stop_status= yn

Permit STOPstatement to return an integer status value.

● f77/f95

yn is either yes or no . The default is no .

With –stop_status=yes , a STOPstatement may contain an integer constant. That

value will be passed to the environment as the program terminates:

demo% limit
cputime unlimited
filesize unlimited
datasize 523256 kbytes
stacksize 8192 kbytes <–––
coredumpsize unlimited
descriptors 64
memorysize unlimited
demo%

demo% limit stacksize 65536

demo% setenv STACKSIZE 8192
Chapter 3 Fortran Compiler Options 89

STOP 123

The value must be in the range 0 to 255. Larger values are truncated and a run–time

message issued. Note that

STOP‘stop string’

is still accepted and returns a status value of 0 to the environment, although a

compiler warning message will be issued.

The environment status variable is $status for the C shell csh , and $? for the

Bourne and Korn shells, sh and ksh .

–temp= dir

Define directory for temporary files.

● f77/f95

Set directory for temporary files used by the compiler to be dir. No space is allowed

within this option string. Without this option, the files are placed in the /tmp
directory.

–time

Time each compilation phase.

● f77/f95

The time spent and resources used in each compiler pass is displayed.

–U

Recognize upper and lower case in source files.

● f77/f95

Do not treat uppercase letters as equivalent to lowercase. The default is to treat

uppercase as lowercase except within character–string constants. With this option,

the compiler treats Delta , DELTA, and delta as different symbols.

Portability and mixing Fortran with other languages may require use of –U. These

are discussed in the Fortran Programming Guide.
90 Fortran User’s Guide • July 2001

-U name

Undefine preprocessor macro name.

● f77/f95

This option applies only to .F and .F95 source files that invoke the fpp or cpp pre-

processor. It removes any initial definition of the preprocessor macro name created

by -D name on the same command line, including those implicitly placed there by the

command-line driver, regardless of the order the options appear. It has no effect on

any macro definitions in source files. Multiple -U name flags can appear on the

command line. There must be no space between -U and the macro name.

–u

Report undeclared variables.

● f77/f95

Make the default type for all variables be undeclared rather than using Fortran

implicit typing. This option warns of undeclared variables, and does not override

any IMPLICIT statements or explicit type statements.

–unroll= n

Enable unrolling of DO loops where possible.

● f77/f95

n is a positive integer. The choices are:

■ n=1 inhibits all loop unrolling.

■ n>1 suggests to the optimizer that it attempt to unroll loops n times.

Loop unrolling generally improves performance, but will increase the size of the

executable file. For more information on this and other compiler optimizations, see

the Performance and Optimization chapter in the Fortran Programming Guide. See also

the discussion of the UNROLLdirective on page 27.

–V

Show name and version of each compiler pass.

● f77/f95

This option prints the name and version of each pass as the compiler executes.

This information may be helpful when discussing problems with Sun service

engineers.
Chapter 3 Fortran Compiler Options 91

–v

Verbose mode – show details of each compiler pass.

● f77/f95

Like –V, shows the name of each pass as the compiler executes, and details the

options, macro flag expansions, and environment variables used by the driver.

–vax= v

Specify choice of VMS Fortran extensions enabled.

● f77

v must be a comma–separated list of at least one suboption. Negatives may be

constructed by prefixing each suboption keyword by no% (as in

no%logical_name).

The primary options are –vax=align and –vax=misalign .

–vax=align selects all the suboptions without allowing misaligned data. This is the

behavior of the –xl option prior to f77 release 3.0.1.

–vax=misalign selects all the suboptions and allows misaligned data. This is the

behavior of the –xl option with f77 releases 3.0.1, 4.0, 4.2, 5.0, and Sun WorkShop 6.

The table below lists suboptions that can be individually selected.

%all and %none can also be used to select all or none of these suboptions. Sub–

options accumulate from left to right. For example, to enable all but one feature:

-vax=%all,no%rsize See also –xl and –misalign .

TABLE 3-10 –vax= Suboptions

–vax= Affect

blank_zero Treat blank in a numeric field as zero.

 bslash Allow backslash (‘\’) in character constants.

 debug Allow VMS Fortran ‘D’ debugging statements.

 logical_name Allow VMS Fortran style logical file names.

 oct_const Allow double quote character to signify octal constants.

 param Allow non–standard form of PARAMETER statement.

 rsize Allow unformatted record size in words rather than bytes.

 struct_align Align structures as in VMS Fortran.
92 Fortran User’s Guide • July 2001

–vpara

Show verbose parallelization messages.

● f77/f95

As the compiler analyzes loops explicitly marked for parallelization with directives,

it issues warning messages about certain data dependencies it detects; but the loop

will still be parallelized.

Example: -vpara for verbose parallelization warnings:

–w

Suppress warning messages.

● f77/f95

This option suppresses most warning messages. However, if one option overrides all

or part of an option earlier on the command line, you do get a warning.

Example: –w still allows some warnings to get through:

For f95: Individual levels from 0 to 4 can be specified: –w0 suppresses the least

messages while –w4 suppresses most warning. –w is equivalent to –w0.

–Xlist [x]

Produce listings and do global program checking (GPC).

● f77/f95

Use this option to find potential programming bugs. It invokes an extra compiler

pass to check for consistency in subprogram call arguments, common blocks, and

parameters, across the global program. The option also generates a line–numbered

demo% f77 -explicitpar -vpara any.f
any.f:
 MAIN any:
"any.f", line 11: Warning: the loop may have parallelization
inhibiting reference

demo% f77 –w –fast –silent –O4 any.f
f77: Warning: –O4 overwrites previously set optimization
level of –O3
demo%
Chapter 3 Fortran Compiler Options 93

listing of the source code, including a cross reference table. The error messages

issued by the –Xlist options are advisory warnings and do not prevent the

program from being compiled and linked.

Note – Be sure to correct all syntax errors in the source code before compiling with

-Xlist .Unpredictable reports may result when run on a source code with syntax

errors.

Example: Check across routines for consistency:

The above example writes the following to the output file fil.lst :

■ A line–numbered source listing (default)

■ Error messages (embedded in the listing) for inconsistencies across routines

■ A cross reference table of the identifiers (default)

By default, the listings are written to the file name.lst , where name is taken from

the first listed source file on the command line.

A number of sub–options provide further flexibility in the selection of actions. These

are specified by suffixes to the main –Xlist option, as shown in the following table

 demo% f95 -Xlist fil.f

TABLE 3-11 –Xlist Suboptions

Option Feature

–Xlist Show errors, listing, and cross reference table

–Xlistc Show call graphs and errors

–XlistE Show errors

–Xlisterr [nnn] Suppress error nnn messages

–Xlistf Show errors, listing, and cross references, but no object files

–Xlistfln dir Put .fln files in directory dir, which must already exist (f77 only)

–Xlisth Terminate compilation if errors detected

–XlistI Analyze #include and INCLUDE files as well as source files

–XlistL Show listing and errors only

–Xlistl n Set page length to n lines

–Xlisto name Rename report file to name.lst

–Xlists Suppress unreferenced names from the cross–reference table
94 Fortran User’s Guide • July 2001

Option –Xlistfln dir is not available with f95 .

See the Fortran Programming Guide chapter Program Analysis and Debugging for

details.

–xa

Synonym for –a .

● f77/f95

–xarch= isa

Specify instruction set architecture (ISA).

Architectures that are accepted by -xarch keyword isa are shown in TABLE 3-12:

Note that although -xarch can be used alone, it is part of the expansion of the

–xtarget option and may be used to override the –xarch value that is set by a

specific –xtarget option. For example:

% f95 -xtarget=ultra2 -xarch=v8plusb ...

overrides the -xarch=v8 set by -xtarget=ultra2

This option limits the code generated by the compiler to the instructions of the

specified instruction set architecture by allowing only the specified set of

instructions. This option does not guarantee use of any target–specific instructions.

If this option is used with optimization, the appropriate choice can provide good

performance of the executable on the specified architecture. An inappropriate choice

results in a binary program that is not executable on the intended target platform.

–Xlistv n Set checking level to n (1,2,3, or 4) – default is 2

–Xlistw [nnn] Set width of output line to nnn columns – default is 79

–Xlistwar [nnn] Suppress warning nnn messages

–XlistX Show cross–reference table and errors

TABLE 3-12 –xarch ISA Keywords

Platform Valid -xarch Keywords

SPARC generic, generic64, native, native64, v7, v8a, v8,
v8plus, v8plusa, v8plusb, v9, v9a, v9b

TABLE 3-11 –Xlist Suboptions (Continued)

Option Feature
Chapter 3 Fortran Compiler Options 95

TABLE 3-13 summarizes the most general -xarch options:

Also note the following:

■ SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

■ Object binary files (.o) compiled with v8plus and v8plusa can be linked and

can execute together, but only on a SPARC V8plusa compatible platform.

■ Object binary files (.o) compiled with v8plus , v8plusa , and v8plusb can be

linked and can execute together, but only on a SPARC V8plusb compatible

platform.

■ -xarch values v9 , v9a , and v9b are only available on UltraSPARC 64–bit Solaris

environments.

■ Object binary files (.o) compiled with v9 and v9a can be linked and can execute

together, but will run only on a SPARC V9a compatible platform.

■ Object binary files (.o) compiled with v9 , v9a , and v9b can be linked and can

execute together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on

earlier architectures. Also, although quad-precision (REAL*16 and long double)

floating-point instructions are available in many of these instruction set

architectures, the compiler does not use these instructions in the code it generates.

TABLE 3-13 Most General -xarch Options on SPARC Platforms

-xarch= Performance

generic • runs adequately on all platforms

v8plusa • runs optimally on UltraSPARC-II processors in 32-bit mode

• no execution on other platforms

v8plusb • runs optimally on UltraSPARC-III processors in 32-bit mode

• no execution on other platforms

v9a • runs optimally on UltraSPARC-II processors in 64-bit mode

• no execution on other platforms

v9b • runs optimally on UltraSPARC-III processors in 64-bit mode

• no execution on other platforms
96 Fortran User’s Guide • July 2001

TABLE 3-14 gives details for each of the -xarch keywords on SPARC platforms.

TABLE 3-14 -xarch Values for SPARC Platforms

-xarch= Meaning

generic Compile for good performance on most 32-bit systems.
This is the default. This option uses the best instruction set for good

performance on most processors without major performance degradation on

any of them. With each new release, the definition of “best” instruction set

may be adjusted, if appropriate, and is currently v7 .

generic64 Compile for good performance on most 64-bit enabled systems.
This option uses the best instruction set for good performance on most 64-

bit enabled processors without major performance degradation on any of

them. With each new release, the definition of “best” instruction set may be

adjusted, if appropriate, and is currently interpreted as v9 .

native Compile for good performance on this system.
This is the default for the -fast option. The compiler chooses the

appropriate setting for the current system processor it is running on.

native64 Compile for good performance in 64-bit mode on this system.
Like native , compiler chooses the appropriate setting for 64-bit mode on

the current system processor it is running on.

v7 Compile for the SPARC-V7 ISA.
Enables the compiler to generate code for good performance on the V7 ISA.

This is equivalent to using the best instruction set for good performance on

the V8 ISA, but without integer mul and div instructions, and the fsmuld
instruction.

Examples: SPARCstation 1, SPARCstation 2

v8a Compile for the V8a version of the SPARC-V8 ISA.
By definition, V8a means the V8 ISA, but without the fsmuld instruction.

This option enables the compiler to generate code for good performance on

the V8a ISA.

Example: Any system based on the microSPARC I chip architecture

v8 Compile for the SPARC-V8 ISA.
Enables the compiler to generate code for good performance on the V8

architecture.

Example: SPARCstation 10
Chapter 3 Fortran Compiler Options 97

v8plus Compile for the V8plus version of the SPARC-V9 ISA.
By definition, V8plus means the V9 ISA, but limited to the 32–bit subset

defined by the V8plus ISA specification, without the Visual Instruction Set

(VIS), and without other implementation-specific ISA extensions.

• This option enables the compiler to generate code for good performance

on the V8plus ISA.

• The resulting object code is in SPARC-V8+ ELF32 format and only

executes in a Solaris UltraSPARC environment—it does not run on a V7 or

V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusa Compile for the V8plusa version of the SPARC-V9 ISA.
By definition, V8plusa means the V8plus architecture, plus the Visual

Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.

• This option enables the compiler to generate code for good performance

on the UltraSPARC architecture, but limited to the 32–bit subset defined by

the V8plus specification.

• The resulting object code is in SPARC-V8+ ELF32 format and only

executes in a Solaris UltraSPARC environment—it does not run on a V7 or

V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8plusb Compile for the V8plusb version of the SPARC-V8plus ISA with
UltraSPARC-III extensions.
Enables the compiler to generate object code for the UltraSPARC

architecture, plus the Visual Instruction Set (VIS) version 2.0, and with

UltraSPARC-III extensions.

• The resulting object code is in SPARC-V8+ ELF32 format and executes

only in a Solaris UltraSPARC-III environment.

• Compiling with this option uses the best instruction set for good

performance on the UltraSPARC-III architecture.

v9 Compile for the SPARC–V9 ISA.
Enables the compiler to generate code for good performance on the V9

SPARC architecture.

• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9 is only available when compiling in a 64–bit enabled Solaris

environment.

TABLE 3-14 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning
98 Fortran User’s Guide • July 2001

–xautopar

Synonym for –autopar .

● f77/f95

–xcache= c

Define cache properties for the optimizer.

● f77/f95

c must be one of the following:

■ generic
■ s1/ l1/ a1
■ s1/ l1/ a1: s2/ l2/ a2
■ s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3

The si/ li/ ai are defined as follows:

si The size of the data cache at level i, in kilobytes

v9a Compile for the SPARC–V9 ISA with UltraSPARC extensions.
Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions

specific to UltraSPARC processors, and enables the compiler to generate

code for good performance on the V9 SPARC architecture.

• The resulting .o object files are in ELF64 format and can only be linked

with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9a is only available when compiling in a 64–bit enabled Solaris

operating environment.

v9b Compile for the SPARC-V9 ISA with UltraSPARC-III extensions.
Adds UltraSPARC-III extensions and VIS version 2.0 to the V9a version of

the SPARC-V9 ISA. Compiling with this option uses the best instruction set

for good performance in a Solaris UltraSPARC-III environment.

• The resulting object code is in SPARC-V9 ELF64 format and can only be

linked with other SPARC-V9 object files in the same format.

• The resulting executable can only be run on an UltraSPARC-III processor

running a 64–bit enabled Solaris operating environment with the 64–bit

kernel.

• –xarch=v9b is only available when compiling in a 64–bit enabled Solaris

operating environment.

TABLE 3-14 -xarch Values for SPARC Platforms (Continued)

-xarch= Meaning
Chapter 3 Fortran Compiler Options 99

li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

This option specifies the cache properties that the optimizer can use. It does not

guarantee that any particular cache property is used.

Although this option can be used alone, it is part of the expansion of the

–xtarget option; it is provided to allow overriding an –xcache value implied by a

specific –xtarget option.

Example: –xcache=16/32/4:1024/32/1 specifies the following:

A Level 1 cache has: 16K bytes, 32 byte line size, 4–way associativity.

A Level 2 cache has: 1024K bytes, 32 byte line size, direct mapping associativity.

–xcg89

Synonym for –cg89 .

● f77/f95

–xcg92

Synonym for –cg92 .

● f77/f95

–xchip= c

Specify target processor for the optimizer.

● f77/f95

This option specifies timing properties by specifying the target processor.

TABLE 3-15 –xcache Values

Value Meaning

generic Define the cache properties for good performance on

most SPARC processors without any major performance

degradation. This is the default.

s1/ l1/ a1 Define level 1 cache properties.

s1/ l1/ a1: s2/ l2/ a2 Define levels 1 and 2 cache properties.

s1/ l1/ a1: s2/ l2/ a2: s3/ l3/ a3 Define levels 1, 2, and 3 cache properties
100 Fortran User’s Guide • July 2001

Although this option can be used alone, it is part of the expansion of the

–xtarget option; it is provided to allow overriding a –xchip value implied by the

a specific –xtarget option.

Some effects of –xchip= c are:

■ Instruction scheduling

■ The way branches are compiled

■ Choice between semantically equivalent alternatives

The following table lists the valid –xchip values:

TABLE 3-16 Valid –xchip Values

Value Optimize for:

generic most SPARC processors.

native this 32-bit host platform.

old pre–SuperSPARC processors.

super the SuperSPARC processor.

super2 the SuperSPARC II processor.

micro the MicroSPARC processor.

micro2 the MicroSPARC II processor.

hyper the HyperSPARC processor.

hyper2 the HyperSPARC II processor.

powerup the Weitek PowerUp processor.

ultra the UltraSPARC processor.

ultra2 the UltraSPARC II processor.

ultra2e the UltraSPARC IIe processor.

ultra2i the UltraSPARC IIi processor.

ultra3 the UltraSPARC III processor.
Chapter 3 Fortran Compiler Options 101

–xcode= code

Specify code address space on SPARC platforms.

● f77/f95

The values for code are:

The defaults (not specifying -xcode= code explicitly) are:

–xcode=abs32 on SPARC V8 and V7 platforms.

–xcode=abs64 on SPARC and UltraSPARC V9 (–xarch=v9 or v9a)

When building shared dynamic libraries with –xarch=v9 or v9a and the 64-bit

Solaris 7 environment, –xcode=pic13 or –xcode=pic32 (or –pic or –PIC) must
be specified.

–xcommonchk [={ no | yes }]

Enable runtime checking of common block inconsistencies.

● f77/f95

This option provides a debug check for common block inconsistencies in programs

using TASK COMMONand parallelization. (See the discussion of the TASK COMMON
directive in the Parallelization chapter in the Fortran Programming Guide.)

The default is –xcommonchk=no ; runtime checking for common block

inconsistencies is disabled because it will degrade performance. Use -xcommon=yes
only during program development and debugging, and not for production-quality

programs.

abs32 Generate 32-bit absolute addresses. Code+data+bss size is limited to

2**32 bytes. This is the default on 32-bit platforms:

-xarch=generic, v7, v8, v8a, v8plus, v8plusa

abs44 Generate 44-bit absolute addresses. Code+data+bss size is limited to

2**44 bytes. Available only on 64-bit platforms: -xarch=v9, v9a

abs64 Generate 64-bit absolute addresses. Available only on 64-bit

platforms: -xarch=v9, v9a

pic13 Generate position-independent code (small model). Equivalent to

-pic . Permits references to at most 2**11 unique external symbols

on 32-bit platforms, 2**10 on 64-bit platforms.

pic32 Generate position-independent code (large model). Equivalent to

-PIC . Permits references to at most 2**30 unique external symbols

on 32-bit platforms, 2**29 on 64-bit platforms.
102 Fortran User’s Guide • July 2001

Compiling with –xcommonchk=yes enables runtime checking. If a common block

declared in one source program unit as a regular common block appears somewhere

else on a TASK COMMONdirective, the program will stop with an error message

indicating the first such inconsistency.

Example: Missing TASKCOMMONdirective in tc.f

–xcrossfile [=n]

Enable optimization and inlining across source files.

● f77/f95

If specified, n may be 0, or 1.

Normally, the scope of the compiler’s analysis is limited to each separate file on the

command line. For example, –O4’s automatic inlining is limited to subprograms

defined and referenced within the same source file.

With –xcrossfile , the compiler analyzes all the files named on the command line

as if they had been concatenated into a single source file.

–xcrossfile is only effective when used with –O4 or –O5.

demo% cat tc.f
 common /x/y(1000)
 do 1 i=1,1000
 1 y(i) = 1.
 call z(57.)
 end
demo% cat tz.f
 subroutine z(c)
 common /x/h(1000)
C$PAR TASKCOMMON X
C$PAR DOALL
 do 1 i=1,1000
1 h(i) = c* h(i)
 return
 end
demo% f95 -c -O4 -parallel -xcommonchk tc.f
demo% f95 -c -O4 -parallel -xcommonchk tz.f
demo% f95 -o tc -O4 -parallel -xcommonchk tc.o tz.o
demo% tc
ERROR(libmtsk): inconsistent declaration of threadprivate/
taskcommon

x_: not declared as threadprivate/taskcommon at line 1 of tc.f
demo%
Chapter 3 Fortran Compiler Options 103

Cross–file inlining creates a possible source file interdependence that would not

normally be there. If any file in a set of files compiled together with

–xcrossfile is changed, then all files must be recompiled to insure that the new

code is properly inlined. See the discussion of inlining on page 69.

The default, without –xcrossfile on the command line, is -xcrossfile=0 , and

no cross-file optimizations are performed. To enable cross-file optimizations, specify

–xcrossfile (equivalent to –xcrossfile=1).

–xdepend

Synonym for –depend .

● f77/f95

–xexplicitpar

Synonym for –explicitpar .

● f77/f95

–xF

Allow function–level reordering by the Sun WorkShop Performance Analyzer.

● f77/f95

Allow the reordering of functions (subprograms) in the core image using the

compiler, the performance analyzer and the linker. If you compile with the -xF
option, then run the analyzer, you can generate a map file that optimizes the

ordering of the functions in memory depending on how they are used together. A

subsequent link to build the executable file can be directed to use that map by using

the linker -Mmapfile option. It places each function from the executable file into a

separate section.

Reordering the subprograms in memory is useful only when the application text

page fault time is consuming a large percentage of the application time. Otherwise,

reordering may not improve the overall performance of the application. The

performance analyzer is part of the Sun WorkShop software. See Using Sun WorkShop
and Analyzing Program Performance with Sun WorkShop for further information on the

analyzer.
104 Fortran User’s Guide • July 2001

-xhasc [={ yes | no}]

Treat Hollerith constant as a character string in an actual argument list.

● f77/f95

With -xhasc=yes , the compiler treats Hollerith constants as character strings when

they appear as an actual argument on a subroutine or function call. This is the

default, and complies with the Fortran 77 standard. (The actual call list generated by

the compiler contains hidden string lengths for each character string.)

With -xhasc=no , Hollerith constants are treated as typeless values in subprogram

calls, and only their addresses are put on the actual argument list. (No string length

is generated on the actual call list passed to the subprogram.)

Compile routines with -xhasc=no if they call a subprogram with a Hollerith

constant and the called subprogram expects that argument as INTEGER(or anything

other than CHARACTER).

Example:

Passing 4habcd to z is handled correctly by compiling with -xhasc=no .

This flag is provided to aid porting older Fortran programs.

–xhelp= h

Show summary help information on options or READMEfile.

● f77/f95

The h is either readme or flags .

demo% cat hasc.f
 call z(4habcd, ’abcdefg’)

end
 subroutine z(i, s)
 integer i
 character *(*) s
 print *, "string length = ", len(s)
 return
 end
demo% f77 -o has0 hasc.f
demo% has0
 string length = 4 <-- should be 7
demo% f77 -o has1 -xhasc=no hasc.f
demo% has1
 string length = 7 <-- now correct length for s
Chapter 3 Fortran Compiler Options 105

-xhelp=readme Show the online READMEfile for this release of the compiler.

-xhelp=flags Show the compiler flags (options), and is same as -help .

-xia [=v]

Enable interval arithmetic extensions and set a suitable floating-point environment.

● f95

v can be one of either widestneed or strict . The default if not specified is

widestneed .

Fortran 95 extensions for interval arithmetic calculations are detailed in the Interval
Arithmetic Programming Reference. See also -xinterval , page 107.

The -xia flag is a macro that expands as follows:

–xild{off|on}

Enable/disable the Incremental Linker.

● f77/f95

-xildoff disables the use of the incremental linker, ild . The standard linker, ld , is

used instead. -xildon enables use of ild instead of ld .

-xildoff is the default if you do not use the –g option. It is also the default if you

use –G or name any source file on the command line.

-xildon is the default if you use –g and do not use –G, and no source files appear

on the command line (just object files and/or libraries).

See the section on ild in the C User’s Guide.

–xinline= list

Synonym for –inline .

● f77/f95

-xia or
-xia=widestneed

-xinterval=widestneed -ftrap=%none -fns=no -fsimple=0

-xia=strict -xinterval=strict -ftrap=%none -fns=no -fsimple=0
106 Fortran User’s Guide • July 2001

-xinterval [=v]

Enable interval arithmetic extensions.

● f95

v can be one of either no , widestneed or strict . The default if not specified is

widestneed.

Fortran 95 extensions for interval arithmetic calculations are detailed in the Interval
Arithmetic Programming Reference. See also -xia , page 106.

-xipo [={0|1}]

Perform interprocedural optimizations.

● f77/f95

Performs whole-program optimizations by invoking an interprocedural analysis

pass. Unlike -xcrossfile , -xipo will perform optimizations across all object files

in the link step, and is not limited to just the source files on the compile command.

-xipo is particularly useful when compiling and linking large multi-file

applications. Object files compiled with this flag have analysis information compiled

within them that enables interprocedural analysis across source and pre-compiled

program files. However, analysis and optimization is limited to the object files

compiled with -xipo , and does not extend to object files on libraries.

-xipo=0 disables, and -xipo=1 enables, interprocedural analysis. The default is

-xipo=0 , and if -xipo is specified without a value, -xipo=1 is used.

When compiling and linking are performed in separate steps, -xipo must be

specified in both steps to be effective.

Example using -xipo in a single compile/link step:

no Interval arithmetic extensions not enabled.

widestneed Promotes all non-interval variables and literals in any mixed-mode

expression to the widest interval data type in the expression.

strict Prohibits mixed-type or mixed-length interval expressions. All

interval type and length conversions must be explicit.

demo% f95 -xipo -xO4 -o prog part1.f part2.f part3.f
Chapter 3 Fortran Compiler Options 107

The optimizer performs crossfile inlining across all three source files. This is done in

the final link step, so the compilation of the source files need not all take place in a

single compilation and could be over a number of separate compilations, each

specifying -xipo .

Example using -xipo in separate compile/link steps:

The object files created in the compile steps have additional analysis information

compiled within them to permit crossfile optimizations to take place at the link step.

A restriction is that libraries, even if compiled with -xipo do not participate in

crossfile interprocedural analysis, as shown in this example:

Here interprocedural optimizations will be performed between one.f , two.f and

three.f , and between main.f and four.f , but not between main.f or four.f
and the routines on mylib.a . (The first compilation may generate warnings about

undefined symbols, but the interprocedural optimizations will be performed because

it is a compile and link step.)

Other important information about -xipo :

■ requires at least optimization level -xO4
■ conflicts with -xcrossfile ; if used together will result in a compilation error

■ objects compiled without -xipo can be linked freely with objects compiled with

-xipo .

■ The -xipo option generates significantly larger object files due to the additional

information needed to perform optimizations across files. However, this

additional information does not become part of the final executable binary file.

Any increase in the size of the executable program will be due to the additional

optimizations performed

■ In this release, crossfile subprogram inlining is the only interprocedural

optimization performed by -xipo .

demo% f95 -xipo -xO4 -c part1.f part2.f
demo% f95 -xipo -xO4 -c part3.f
demo% f95 -xipo -xO4 -o prog part1.o part2.o part3.o

demo% f95 -xipo -xO4 one.f two.f three.f
demo% ar -r mylib.a one.o two.o three.o
...
demo% f95 -xipo -xO4 -o myprog main.f four.f mylib.a
108 Fortran User’s Guide • July 2001

–xl [d]

Enable more VMS Fortran extensions.

● f77

–xl: Enable the compiler to accept more VMS Fortran extensions. This is a macro

that is translated to –vax=misalign , and provides the language features that are

listed later in this description. See the description of –vax= , page 92.

Although most VMS features are accepted automatically by f77 without any special

options, you must use the -xl option for a few VMS extensions.

In general, you need the –xl option if a source statement can be interpreted as either

a VMS feature or an f77 or f95 feature, and you want the VMS feature. In this case,

the –xl option forces the compiler to interpret it the VMS way.

This option enables the following VMS language features:

■ Unformatted record size in words rather than bytes (–xl)

■ VMS style logical file names (–xl)

■ Quote (") character introducing octal constants (–xl)

■ Backslash (\) as ordinary character within character constants (–xl)

■ Nonstandard form of the PARAMETERstatement (–xl)

■ Alignment of structures as in VMS. (–xl)

■ Debugging lines as comment lines or Fortran statements (–xld)

Use –xl to get VMS alignment if your program has some detailed knowledge of

how VMS structures are implemented.

Use –xld to cause compilation of debugging comments (D or d in column one).

Without the -xld option, they remain comments only. (There is no space between

-xl and d.)

Programs that share structures with C routines should not use -xl.

See the Fortran Library Reference for information on the VMS libraries. See also the

chapter on VMS language extensions in the Fortran 77 Language Reference that the

f77 compiler automatically recognizes.

-xlang= pl

● f95

Prepare for linking with runtime libraries for programming language pl.

For f95 , only -xlang=f77 is allowed.

f95 -xlang=f77 implies linking with the f77compat library, and is a shorthand

way for linking Fortran 95 object files with Fortran 77 object files that insures the

proper runtime environment.
Chapter 3 Fortran Compiler Options 109

Use f95 -xlang=f77 when linking f95 and f77 compiled objects together into a

single executable.

–xlibmil

Synonym for –libmil .

● f77/f95

–xlibmopt

Use library of optimized math routines.

● f77/f95

Use selected math routines optimized for speed. This option usually generates faster

code. It may produce slightly different results; if so, they usually differ in the last bit.

The order on the command line for this library option is not significant.

–xlic_lib=sunperf

Link with the Sun Performance Library.

● f77/f95

For example:

As with –l , this option should appear on the command line after all source and

object file names.

This option must be used to link with the Sun Performance Library. (See the Sun
Performance Library User’s Guide.)

–xlicinfo

Show license server information.

● f77/f95

Use this option to return license information about the licensing system—in

particular, the name of the license server and the user ID for each of the users who

have licenses checked out.

f77 –o pgx –fast pgx.f –xlic_lib=sunperf
110 Fortran User’s Guide • July 2001

Generally, with this option, no compilation takes place, and a license is not checked

out. This option is normally used alone with no other options. However, if a

conflicting option is used, then the last one on the command line prevails, and there

is a warning.

–xloopinfo

Synonym for –loopinfo .

● f77/f95

–xmaxopt [=n]

Enable optimization pragma and set maximum optimization level.

● f77/f95

n has the value 1 through 5 and corresponds to the optimization levels of –O1
through –O5. If not specified, the compiler uses 5.

This option enables the C$PRAGMA SUN OPT=n directive (see page 28) when it

appears in the source input. Without this option, the compiler treats these lines as

comments.

If such a pragma directive appears with an optimization level greater than the

maximum level on the –xmaxopt flag, the compiler uses the level set by –xmaxopt .

-xmemalign [=<a>]

Specify maximum assumed memory alignment and behavior of misaligned data

accesses.

● f77/f95

For memory accesses where the alignment is determinable at compile time, the

compiler will generate the appropriate load/store instruction sequence for that data

alignment.

For memory accesses where the alignment cannot be determined at compile time,

the compiler must assume an alignment to generate the needed load/store sequence.

The -xmemalign flag allows the user to specify the maximum memory alignment of

data to be assumed by the compiler for those indeterminate situations. It also

specifies the error behavior at runtime when a misaligned memory access does take

place.

The value specified consists of two parts: a numeric alignment value, <a>, and an

alphabetic behavior flag, .
Chapter 3 Fortran Compiler Options 111

Allowed values for alignment, <a>, are:

1 Assume at most 1-byte alignment.

2 Assume at most 2-byte alignment.

4 Assume at most 4-byte alignment.

8 Assume at most 8-byte alignment.

16 Assume at most 16-byte alignment.

Allowed values for error behavior on accessing misaligned data, , are:

i Interpret access and continue execution

s Raise signal SIGBUS

f Raise signal SIGBUS only for alignments less or equal to 4

The defaults without -xmemalign specified are:

■ 4s for -xarch=generic,v7,v8,v8a,v8plus,v8plusa
■ 8s for -xarch=v9,v9a for C and C++

■ 8f for -xarch=v9,v9a for Fortran

The default for -xmemalign appearing without a value is 1i for all platforms.

The -dalign (page 52) and -misalign (page 73) options are macros:

-dalign is a macro for: -xmemalign=8s -aligncommon=16
-misalign is a macro for: -xmemalign=1i -aligncommon=1

–xnolib

Synonym for –nolib .

● f77/f95

–xnolibmil

Synonym for –nolibmil .

● f77/f95

–xnolibmopt

Do not use fast math library.

● f77/f95

Use with –fast to override linking the optimized math library:

f77 –fast –xnolibmopt …
112 Fortran User’s Guide • July 2001

–xOn

Synonym for –On.

● f77/f95

-xopenmp

Synonym for -openmp .

● f95

–xpad

Synonym for –pad .

● f77

–xparallel

Synonym for –parallel .

● f77/f95

–xpg

Synonym for –pg .

● f77/f95

–xpp= { fpp | cpp }

Select source file preprocessor.1fs

● f77/f95

The default is –xpp=fpp .

The compilers use fpp (1) to preprocess .F or .f95 source files. This preprocessor is

appropriate for Fortran. Previous versions used the standard C preprocessor cpp . To

select cpp , specify –xpp=cpp .
Chapter 3 Fortran Compiler Options 113

–xprefetch [=a[,a]]

Enable prefetch instructions on platforms that support prefetch, such as

UltraSPARC II.

● f77/f95

See page 29 for a description of the Fortran PREFETCHdirectives.

Enable prefetch instructions on those architectures that support prefetch, such as

UltraSPARC II (-xarch=v8plus , v8plusa , v9plusb , v9 , v9a , or v9b)

a must be one of the following values.

With -xprefetch , -xprefetch=auto , and -xprefetch=yes , the compiler is free

to insert prefetch instructions into the code it generates. This may result in a

performance improvement on architectures that support prefetch.

If you are running computationally intensive codes on large multiprocessors, you

might find it advantageous to use -xprefetch =latx: factor. This option instructs

the code generator to adjust the default latency time between a prefetch and its

associated load or store by the specified factor.

The prefetch latency is the hardware delay between the execution of a prefetch

instruction and the time the data being prefetched is available in the cache. The

compiler assumes a prefetch latency value when determining how far apart to place

a prefetch instruction and the load or store instruction that uses the prefetched data.

Note – The assumed latency between a prefetch and a load may not be the same as

the assumed latency between a prefetch and a store.

Value Meaning

auto Enable automatic generation of prefetch instructions

no%auto Disable automatic generation of prefetch instructions

explicit Enable explicit prefetch macros

no%explicit Disable explicit prefetch macros

latx: factor Adjust the compiler’s assumed prefetch-to-load and prefetch-to-

store latencies by the specified factor. The factor must be a positive

floating-point or integer number.

yes -xprefetch=yes is the same as -xprefetch=auto,explicit

no -xprefetch=no is the same as

-xprefetch=no%auto,no%explicit
114 Fortran User’s Guide • July 2001

The compiler tunes the prefetch mechanism for optimal performance across a wide

range of machines and applications. This tuning may not always be optimal. For

memory-intensive applications, especially applications intended to run on large

multiprocessors, you may be able to obtain better performance by increasing the

prefetch latency values. To increase the values, use a factor that is greater than 1. A

value between .5 and 2.0 will most likely provide the maximum performance.

For applications with datasets that reside entirely within the external cache, you may

be able to obtain better performance by decreasing the prefetch latency values. To

decrease the values, use a factor that is less than 1.

To use the -xprefetch=latx: factor option, start with a factor value near 1.0 and

run performance tests against the application. Then increase or decrease the factor,

as appropriate, and run the performance tests again. Continue adjusting the factor

and running the performance tests until you achieve optimum performance. When

you increase or decrease the factor in small steps, you will see no performance

difference for a few steps, then a sudden difference, then it will level off again.

Defaults:

If -xprefetch is not specified, -xprefetch=no%auto,explicit is assumed.

If only -xprefetch is specified, -xprefetch=auto,explicit is assumed.

The default of no%auto is assumed unless explicitly overridden with the use of

-xprefetch without any arguments or with an argument of auto or yes . For

example, -xprefetch=explicit is the same as

-xprefetch=explicit,no%auto .

The default of explicit is assumed unless explicitly overridden with an argument

of no%explicit or an argument of no . For example, -xprefetch=auto is the

same as -xprefetch=auto,explicit .

If automatic prefetching is enabled, such as with -xprefetch or -xprefetch=yes ,

but a latency factor is not specified, then -xprefetch=latx:1.0 is assumed.

Interactions:

With -xprefetch=explicit , the compiler will recognize the directives:

$PRAGMA SPARC_PREFETCH_READ_ONCE (name)
$PRAGMA SPARC_PREFETCH_READ_MANY (name)
$PRAGMA SPARC_PREFETCH_WRITE_ONCE (name)
$PRAGMA SPARC_PREFETCH_WRITE_MANY (name)

The -xchip setting effects the determination of the assumed latencies and therefore

the result of a latx: factor setting.
Chapter 3 Fortran Compiler Options 115

The latx: factor suboption is valid only when automatic prefetching is enabled. That

is, latx: factor is ignored unless it is used with yes or auto .

Warnings:

Explicit prefetching should only be used under special circumstances that are

supported by measurements.

Because the compiler tunes the prefetch mechanism for optimal performance across

a wide range of machines and applications, you should only use

-xprefetch=latx: factor when the performance tests indicate there is a clear

benefit. The assumed prefetch latencies may change from release to release.

Therefore, retesting the effect of the latency factor on performance whenever

switching to a different release is highly recommended.

–xprofile= p

Collect or optimize with runtime profiling data.

● f77/f95

p must be one of collect [: name], use [: name], or tcov . Optimization level must

be -O2 or greater.

collect [: name]

Collect and save execution frequency data for later use by the optimizer with

-xprofile=use . The compiler generates code to measure statement execution

frequency.

The name is the name of the program that is being analyzed. This name is

optional. If name is not specified, a.out is assumed to be the name of the

executable.

At runtime a program compiled with –xprofile=collect: name will create by

default the subdirectory name.profile to hold the runtime feedback

information. The program writes its runtime profile data to the file feedback in

this subdirectory. If you run the program several times, the execution frequency

data accumulates in the feedback file; that is, output from prior runs is not lost.

You can set the environment variables SUN_PROFDATAand SUN_PROFDATA_DIR
to control the file and directory where a program compiled with

-xprofile=collect writes its runtime profile data. With these variables set,

the program compiled with -xprofile=collect writes its profile data to

$SUN_PROFDATA_DIR/$SUN_PROFDATA.

These environment variables similarly control the path and names of the profile

data files written by tcov , as described in the tcov (1) man page.
116 Fortran User’s Guide • July 2001

use [: nm]

Use execution frequency data to optimize strategically.

As with collect:nm , the nm is optional and may be used to specify the name of

the program.

The program is optimized by using the execution frequency data previously

generated and saved in the feedback files written by a previous execution of the

program compiled with –xprofile=collect .

The source files and other compiler options must be exactly the same as used for

the compilation that created the compiled program that generated the feedback
file. If compiled with –xprofile=collect: nm, the same program name nm
must appear in the optimizing compilation: –xprofile=use: nm.

tcov

Basic block coverage analysis using “new” style tcov .

Code instrumentation is similar to that of –a , but .d files are no longer generated

for each source file. Instead, a single file is generated, whose name is based on the

name of the final executable. For example, if stuff is the executable file, then

stuff.profile/tcovd is the data file.

When running tcov , you must pass it the –x option to make it use the new style

of data. If not, tcov uses the old .d files, if any, by default for data, and produces

unexpected output.

Unlike –a , the TCOVDIRenvironment variable has no effect at compile–time.

However, its value is used at program runtime to identify where to create the

profile subdirectory.

See the tcov (1) man page, the Performance Profiling chapter of the Fortran
Programming Guide, and the Analyzing Program Performance with Sun WorkShop
manual for more details.

Note: The report produced by tcov can be unreliable if there is inlining of

subprograms due to -O4 or -inline . Coverage of calls to routines that have been

inlined is not recorded.
Chapter 3 Fortran Compiler Options 117

-xrecursive

Allow routines without RECURSIVEattribute call themselves recursively.

● f95

Only subprograms defined with the RECURSIVEattribute can call themselves

recursively, unless they are compiled with -xrecursive .

However, compiling with -xrecursive may cause performance degradations.

Also consider using -stackvar with -xrecursive since -xrecursive does not

by itself allocate local variables on the memory stack.

–xreduction

Synonym for –reduction .

● f77/f95

–xregs= r

Specify register usage.

● f77/f95

r is a comma–separated list that consists of one or more of the following:

[no%]appl , [no%]float .

Where the %is shown, it is a required character.

Example: –xregs=appl,no%float

■ appl : Allow using the application registers.

On SPARC systems, certain registers are described as application registers. Using

these registers can increase performance because fewer load and store instructions

are needed. However, such use can conflict with some old library programs

written in assembly code.

The set of application registers depends on the SPARC platform:

■ -xarch=v8 or v8a — registers %g2, %g3, and %g4
■ -xarch=v8 or v8a — registers %g2, %g3, and %g4
■ -xarch=v8plus or v8plusa — registers %g2, %g3, and %g4
■ -xarch=v9 or v9a — registers %g2and %g3

■ no%appl : Do not use the appl registers.

■ float : Allow using the floating–point registers as specified in the SPARC ABI.

You can use these registers even if the program contains no floating–point code.
118 Fortran User’s Guide • July 2001

■ no%float : Do not use the floating–point registers. With this option, a source

program cannot contain any floating–point code.

The default is: –xregs=appl,float .

–xs

Allow debugging by dbx without object (.o) files .

● f77/f95

With –xs , if you move executables to another directory, then you can use dbx and

ignore the object (.o) files. Use this option when you cannot keep the .o files.

■ The compiler passes -s to the assembler and then the linker places all symbol

tables for dbx in the executable file.

■ This way of handling symbol tables is the older way. It is sometimes called no
auto–read

■ The linker links more slowly, and dbx initializes more slowly.

Without –xs , if you move the executables, you must move both the source files and

the object (.o) files, or set the path with either the dbx pathmap or use command.

■ This way of handling symbol tables is the newer and default way of loading

symbol tables. It is sometimes called auto–read.

■ The symbol tables are distributed in the .o files so that dbx loads the symbol

table information only if and when it is needed. Hence, the linker links faster, and

dbx initializes faster.

–xsafe=mem

Allow the compiler to assume that no memory protection violations occur.

● f77/f95

Using this option allows the compiler to assume no memory–based traps occur. It

grants permission to use the speculative load instruction on the SPARC V9

platforms.

This option is effective only when used with optimization level -O5 one one of the

following architectures (-xarch): v8plus, v8plusa, v8plusb, v9, v9a, or v9b

Warning:

■ Because non-faulting loads do not cause a trap when a fault such as address

misalignment or segmentation violation occurs, you should use this option only

for programs in which such faults cannot occur. Because few programs incur

memory-based traps, you can safely use this option for most programs. Do not

use this option with programs that explicitly depend on memory-based traps to

handle exceptional conditions.
Chapter 3 Fortran Compiler Options 119

–xsb

Synonym for –sb .

● f77/f95

–xsbfast

Synonym for –sbfast .

● f77/f95

–xspace

Do not allow optimizations to increase code size.

● f77/f95

Do no optimizations that increase the code size.

Example: Do not unroll or parallelize loops if it increases code size.

–xtarget= t

Specify target platform for optimization.

● f77/f95

Specify the target platform for the instruction set and optimization.

t must be one of: native , native64 , generic , generic64 , platform–name.

The –xtarget option permits a quick and easy specification of the –xarch ,

-xchip , and –xcache combinations that occur on real platforms. The only meaning

of –xtarget is in its expansion.

The performance of some programs may benefit by providing the compiler with an

accurate description of the target computer hardware. When program performance

is critical, the proper specification of the target hardware could be very important.

This is especially true when running on the newer SPARC processors. However, for

most programs and older SPARC processors, the performance gain is negligible and

a generic specification is sufficient.

native : Optimize performance for the host platform.

The compiler generates code optimized for the host platform. It determines the

available architecture, chip, and cache properties of the machine on which the

compiler is running.

native64 : Compile for native 64-bit environment.
120 Fortran User’s Guide • July 2001

Set the architecture, chip, and cache properties for the 64-bit environment on the

machine on which the compiler is running.

generic : Get the best performance for generic architecture, chip, and cache.

The compiler expands –xtarget=generic to:

–xarch=generic –xchip=generic –xcache=generic

This is the default value.

generic64 : Compile for generic 64-bit environment.

This expands to -xarch=v9 -xcache=generic -xchip=generic

platform–name: Get the best performance for the specified platform.

Appendix D gives a complete list of current SPARC platform names accepted by

the compilers. For example, -xtarget=ultra2i

–xtime

Synonym for –time .

● f77/f95

–xtypemap= spec

Specify default data mappings.

● f77/f95

This option provides a flexible way to specify the byte sizes for default data types.

Use of this option is preferred over –dbl and –r8 , and applies to both default-size

variables and constants.

The specification string spec may contain any or all of the following in a comma-

delimited list:

real: size
double: size
integer: size

The accepted data size values are: 64 , 128 , for real and double ; 32 , 64 , and mixed
for integer . For example:

-xtypemap=real:64,double:128,integer:64

This option applies to all variables declared with default specifications (without

explicit byte sizes), as in REAL XYZ(resulting in a 64-bit XYZ). Also, all single-

precision REALconstants are promoted to REAL*8.
Chapter 3 Fortran Compiler Options 121

The allowable combinations on each platform are:

■ real:32
■ real:64
■ double:64
■ double:128
■ integer:32
■ integer:64
■ integer:mixed (f77 only)

The integer:mixed mapping specifies 8-byte data but only 4-byte arithmetic, and

is only available with f77 . Preferred is integer:64 .

The f77 flags –dbl and –r8 options have their –xtypemap equivalents:

■ –dbl same as: –xtypemap=real:64,double:128,integer:64
■ –r8 same as: –xtypemap=real:64,double:128,integer:mixed

There are two additional possibilities on

■ –xtypemap=real:64,double:64,integer:mixed
■ –xtypemap=real:64,double:64,integer:64

which map both default REALand DOUBLEto 8 bytes, and may be preferable over

the use of –dbl or –r8 because they do not promote DOUBLE PRECISIONto QUAD
PRECISION.

Note that INTEGERand LOGICAL are treated the same, and COMPLEXis mapped as

two REALs. Also, DOUBLE COMPLEXwill be treated the way DOUBLEis mapped.

–xunroll= n

Synonym for –unroll= n.

● f77/f95

–xvector [={ yes | no}]

Enable automatic calls to the SPARC vector library functions.

● f77/f95

With –xvector=yes , the compiler is permitted to transform certain math library

calls within DO loops into single calls to the equivalent vectorized library routine

whenever possible. This could result in a performance improvement for loops with

large loop counts.

The compiler defaults to –xvector=no. Specifying –xvector by itself defaults to

-xvector=yes .
122 Fortran User’s Guide • July 2001

This option also triggers –depend . (Follow –xvector with –nodepend on the

command line to cancel the dependency analysis.)

The compiler will automatically notify the linker to include the libmvec and libc
libraries in the load step if –xvector appears. However, to compile and link in

separate steps requires specifying –xvector on the link step as well to correctly

select these necessary libraries.

–xvpara

Synonym for –vpara .

● f77

–Zlp

Obsolete: Compile for loop performance profiling by looptool .

● f77/f95

This option and looptool are no longer supported. Use the Sun WorkShop

Performance Analyzer instead.

Refer to Analyzing Program Performance With Sun WorkShop, and the analyzer (1)

man page for more information.

–ztext

Generate only pure libraries with no relocations.

● f77/f95

Do not make the library if relocations remain.

The general purpose of –ztext is to verify that a generated library is pure text;

instructions are all position–independent code. Therefore, it is generally used with

both –G and –pic .

With –ztext , if ld finds an incomplete relocation in the text segment, then it does

not build the library. If it finds one in the data segment, then it generally builds the

library anyway; the data segment is writable.

Without –ztext , ld builds the library, relocations or not.

A typical use is to make a library from both source files and object files, where you

do not know if the object files were made with –pic .
Chapter 3 Fortran Compiler Options 123

Example: Make library from both source and object files:

An alternate use is to ask if the code is position–independent already: compile

without –pic , but ask if it is pure text.

Example: Ask if it is pure text already—even without –pic :

If you compile with –ztext and ld does not build the library, then you can

recompile without –ztext , and ld will build the library. The failure to build with

-ztext means that one or more components of the library cannot be shared;

however, maybe some of the other components can be shared. This raises questions

of performance that are best left to you, the programmer.

demo% f77 –G –pic –ztext –o MyLib –hMyLib a.f b.f x.o y.o

demo% f77 –G –ztext –o MyLib –hMyLib a.f b.f x.o y.o
124 Fortran User’s Guide • July 2001

APPENDIX A

Runtime Error Messages

This appendix describes the error messages generated by the Fortran I/O library,

signal handler, and operating system.

Operating System Error Messages

Operating system error messages include system call failures, C library errors, and

shell diagnostics. The system call error messages are found in intro (2). System calls

made through the Fortran library do not produce error messages directly. The

following system routine in the Fortran library calls C library routines which

produce an error message:

The following message is displayed:

integer system, status
status = system("cp afile bfile")
print*, "status = ", status
end

cp: cannot access afile
 status = 512
125

Signal Handler Error Messages (f77)

Before beginning execution of a program, the Fortran 77 library sets up a signal

handler (sigdie) for signals that can cause termination of the program. sigdie
prints a message that describes the signal, flushes any pending output, and

generates a core image.

Presently, the only arithmetic exception that produces an error message is the

INTEGER*2 division with a denominator of zero. All other arithmetic exceptions are

ignored.

A signal handler error example follows, where the subroutine SUBtries to access

parameters that are not passed to it:

The following error message results when compiled with f77 and run:

The Fortran 95 compiler does not set up error handlers.

I/O Error Messages (f77)

The error messages in this section are generated by the Fortran 77 I/O library. The

error numbers are returned in the IOSTAT variable if the ERRreturn is taken.

CALL SUB()
END
SUBROUTINE SUB(I,J,K)
I=J+K
RETURN
END

*** TERMINATING sub77
*** Received signal 11 SIGSEGV
Segmentation Fault
126 Fortran User’s Guide • July 2001

For example, the following program tries to do an unformatted write to a file opened

for formatted output:

and produces error messages like the following:

The following error messages are generated. These same messages are also

documented at the end of the man page perror (3F).

If the error number is less than 1000, then it is a system error. See intro (2).

WRITE(6) 1
END

sue: [1003] unformatted io not allowed
logical unit 6, named 'stdout'
lately: writing sequential unformatted external IO

TABLE A-1 f77 Runtime I/O Messages

Error Message

1000 error in format
Read the error message output for the location of the error in the format. It can

be caused by more than 10 levels of nested parentheses or an extremely long

format statement.

1001 illegal unit number
It is illegal to close logical unit 0. Negative unit numbers are not allowed. The

upper limit is 231 - 1.

1002 formatted io not allowed
The logical unit was opened for unformatted I/O.

1003 unformatted io not allowed
The logical unit was opened for formatted I/O.

1004 direct io not allowed
The logical unit was opened for sequential access, or the logical record length

was specified as 0.

1005 sequential io not allowed
The logical unit was opened for direct access I/O.

1006 can’t backspace file
You cannot do a seek on the file associated with the logical unit; therefore, you

cannot backspace. The file may be a tty device or a pipe.

1007 off beginning of record
You tried to do a left tab to a position before the beginning of an internal input

record.
Appendix A Runtime Error Messages 127

1008 can’t stat file
The system cannot return status information about the file. Perhaps the directory

is unreadable.

1009 no * after repeat count
Repeat counts in list-directed I/O must be followed by an * with no blank

spaces.

1010 off end of record
A formatted write tried to go beyond the logical end-of-record. An unformatted

read or write also causes this

1011 <Not used>

1012 incomprehensible list input
List input has to be as specified in the declaration.

1013 out of free space
The library dynamically creates buffers for internal use. You ran out of memory

for them; that is, your program is too big.

1014 unit not connected
The logical unit was not open.

1015 read unexpected character
Certain format conversions cannot tolerate nonnumeric data.

1016 illegal logical input field
logical data must be T or F.

1017 ’new’ file exists
You tried to open an existing file with status='new'.

1018 can’t find ’old’ file
You tried to open a nonexistent file with status='old'.

1019 unknown system error
This error should not happen, but...

1020 requires seek ability
Attempted a seek on a file that does not allow it. I/O operation requiring a

seek are direct access, sequential unformatted I/O, and tabbing left.

1021 illegal argument
Certain arguments to open and related functions are checked for legitimacy.

Often only nondefault forms are checked

1022 negative repeat count
The repeat count for list-directed input must be a positive integer.

1023 illegal operation for unit
Attempted an I/O operation that is not possible for the device associated with

the logical unit. You get this error if you try to read past end-of-tape, or end-of-

file.

TABLE A-1 f77 Runtime I/O Messages (Continued)

Error Message
128 Fortran User’s Guide • July 2001

1024 <Not used>

1025 incompatible specifiers in open
Attempted to open a file with the 'new' option and the access='append' option, or

some other invalid combination.

1026 illegal input for namelist
A namelist read encountered an invalid data item.

1027 error in FILEOPT parameter
The FILEOPT string in an OPENstatement has bad syntax.

1028 WRITE to readonly file
Attempt to write on a unit that was opened for reading only.

1029 READ from writeonly file
Attempt to read from a unit that was opened for writing only.

1030 overflow converting numeric input
Integer input data is too large for the corresponding input variable

1032 exponent overflow on numeric input
The floating-point input data is too large to be represented by the corresponding

input variable.

TABLE A-1 f77 Runtime I/O Messages (Continued)

Error Message
Appendix A Runtime Error Messages 129

I/O Error Messages (f95)

Error messages generated by Fortran 95 programs are different than those generated

by Fortran 77 programs. Here is the previous example, compiled and run with

Fortran 95:

Because the f95 message contains references to the originating source code filename

and line number, application developers should consider using the ERR=clause

in I/O statements to softly trap runtime I/O errors.

TABLE A-2 lists the runtime I/O messages issued by f95 .

demo% cat wf.f
 WRITE(6) 1
 END
demo% f95 -o wf wf.f
demo% wf

 ****** FORTRAN RUN-TIME SYSTEM ******
 Error 1003: unformatted I/O on formatted unit
 Location: the WRITE statement at line 1 of "wf.f"
 Unit: 6
 File: standard output
Abort

TABLE A-2 f95 Runtime I/O Messages

Error Message

1000 format error

1001 illegal unit number

1002 formatted I/O on unformatted unit

1003 unformatted I/O on formatted unit

1004 direct-access I/O on sequential-access unit

1005 sequential-access I/O on direct-access unit

1006 device does not support BACKSPACE

1007 off beginning of record

1008 can't stat file

1009 no * after repeat count
130 Fortran User’s Guide • July 2001

1010 record too long

1011 truncation failed

1012 incomprehensible list input

1013 out of free space

1014 unit not connected

1015 read unexpected character

1016 illegal logical input field

1017 'new' file exists

1018 can't find 'old' file

1019 unknown system error

1020 requires seek ability

1021 illegal argument

1022 negative repeat count

1023 illegal operation for channel or device

1024 reentrant I/O

1025 incompatible specifiers in open

1026 illegal input for namelist

1027 error in FILEOPT parameter

1028 writing not allowed

1029 reading not allowed

1030 integer overflow on input

1031 floating-point overflow on input

1032 floating-point underflow on input

1051 default input unit closed

1052 default output unit closed

1053 direct-access READ from unconnected unit

1054 direct-access WRITE to unconnected unit

1055 unassociated internal unit

1056 null reference to internal unit

TABLE A-2 f95 Runtime I/O Messages (Continued)

Error Message
Appendix A Runtime Error Messages 131

1057 empty internal file

1058 list-directed I/O on unformatted unit

1059 namelist I/O on unformatted unit

1060 tried to write past end of internal file

1061 unassociated ADVANCE specifier

1062 ADVANCE specifier is not 'YES' or 'NO'

1063 EOR specifier present for advancing input

1064 SIZE specifier present for advancing input

1065 negative or zero record number

1066 record not in file

1067 corrupted format

1068 unassociated input variable

1069 more I/O-list items than data edit descriptors

1070 zero stride in subscript triplet

1071 zero step in implied DO-loop

1072 negative field width

1073 zero-width field

1074 character string edit descriptor reached on input

1075 Hollerith edit descriptor reached on input

1076 no digits found in digit string

1077 no digits found in exponent

1078 scale factor out of range

1079 digit equals or exceeds radix

1080 unexpected character in integer field

1081 unexpected character in real field

1082 unexpected character in logical field

1083 unexpected character in integer value

1084 unexpected character in real value

1085 unexpected character in complex value

TABLE A-2 f95 Runtime I/O Messages (Continued)

Error Message
132 Fortran User’s Guide • July 2001

1086 unexpected character in logical value

1087 unexpected character in character value

1088 unexpected character before NAMELIST group name

1089 NAMELIST group name does not match the name in the program

1090 unexpected character in NAMELIST item

1091 unmatched parenthesis in NAMELIST item name

1092 variable not in NAMELIST group

1093 too many subscripts in NAMELIST object name

1094 not enough subscripts in NAMELIST object name

1095 zero stride in NAMELIST object name

1096 empty section subscript in NAMELIST object name

1097 subscript out of bounds in NAMELIST object name

1098 empty substring in NAMELIST object name

1099 substring out of range in NAMELIST object name

1100 unexpected component name in NAMELIST object name

1111 unassociated ACCESS specifier

1112 unassociated ACTION specifier

1113 unassociated BINARY specifier

1114 unassociated BLANK specifier

1115 unassociated DELIM specifier

1116 unassociated DIRECT specifier

1117 unassociated FILE specifier

1118 unassociated FMT specifier

1119 unassociated FORM specifier

1120 unassociated FORMATTED specifier

1121 unassociated NAME specifier

1122 unassociated PAD specifier

1123 unassociated POSITION specifier

1124 unassociated READ specifier

TABLE A-2 f95 Runtime I/O Messages (Continued)

Error Message
Appendix A Runtime Error Messages 133

1125 unassociated READWRITE specifier

1126 unassociated SEQUENTIAL specifier

1127 unassociated STATUS specifier

1128 unassociated UNFORMATTED specifier

1129 unassociated WRITE specifier

1130 zero length file name

1131 ACCESS specifier is not 'SEQUENTIAL' or 'DIRECT'

1132 ACTION specifier is not 'READ', 'WRITE' or 'READWRITE'

1133 BLANK specifier is not 'ZERO' or 'NULL'

1134 DELIM specifier is not 'APOSTROPHE', 'QUOTE', or 'NONE'

1135 unexpected FORM specifier

1136 PAD specifier is not 'YES' or 'NO'

1137 POSITION specifier is not 'APPEND', 'ASIS', or 'REWIND'

1138 RECL specifier is zero or negative

1139 no record length specified for direct-access file

1140 unexpected STATUS specifier

1141 status is specified and not 'OLD' for connected unit

1142 STATUS specifier is not 'KEEP' or 'DELETE'

1143 status 'KEEP' specified for a scratch file

1144 impossible status value

1145 a file name has been specified for a scratch file

1146 attempting to open a unit that is being read from or
written to

1147 attempting to close a unit that is being read from or
written to

1148 attempting to open a directory

1149 status is 'OLD' and the file is a dangling symbolic link

1150 status is 'NEW' and the file is a symbolic link

1151 no free scratch file names

1152 specifier ACCESS='STREAM' for default unit

TABLE A-2 f95 Runtime I/O Messages (Continued)

Error Message
134 Fortran User’s Guide • July 2001

1153 stream-access to default unit

1161 device does not support REWIND

1162 read permission required for BACKSPACE

1163 BACKSPACE on direct-access unit

1164 BACKSPACE on binary unit

1165 end-of-file seen while backspacing

1166 write permission required for ENDFILE

1167 ENDFILE on direct-access unit

1168 stream-access to sequential or direct-access unit

1169 stream-access to unconnected unit

1170 direct-access to stream-access unit

1171 incorrect value of POS specifier

1172 unassociated ASYNCHRONOUS specifier

1173 unassociated DECIMAL specifier

1174 unassociated IOMSG specifier

1175 unassociated ROUND specifier

1176 unassociated STREAM specifier

1177 ASYNCHRONOUS specifier is not 'YES' or 'NO'

1178 ROUND specifier is not 'UP', 'DOWN', 'ZERO', 'NEAREST',
'COMPATIBLE' or 'PROCESSOR-DEFINED'

1179 DECIMAL specifier is not 'POINT' or 'COMMA'

1180 RECL specifier is not allowed in OPEN statement for stream-
access unit

1181 attempting to allocate an allocated array

1182 deallocating an unassociated pointer

1183 deallocating an unallocated allocatable array

1184 deallocating an allocatable array through a pointer

1185 deallocating an object not allocated by an ALLOCATE
statement

1186 deallocating a part of an object

1187 deallocating a larger object than was allocated

TABLE A-2 f95 Runtime I/O Messages (Continued)

Error Message
Appendix A Runtime Error Messages 135

1191 unallocated array passed to array intrinsic function

1192 illegal rank

1193 small source size

1194 zero array size

1195 negative elements in shape

1196 illegal kind

1197 nonconformable array

2001 invalid constant, structure, or component name

2002 handle not created

2003 character argument too short

2004 array argument too long or too short

2005 end of file, record, or directory stream

TABLE A-2 f95 Runtime I/O Messages (Continued)

Error Message
136 Fortran User’s Guide • July 2001

APPENDIX B

Features Release History

This Appendix lists the new and changed features in this and previous release of

f77 and f95 :

Fortran 95 New Features and Changes

This section lists the new features and behavior changes introduced with this release

of f95 and previous releases.

f95 New Features in Sun WorkShop 6 update 2:

The following lists new and changed features in the Fortran 95 compiler released

with Sun WorkShop 6 update 2:

■ ALLOCATABLEAttribute Extended: Recent decisions by the Fortran 95 standards

organizations have extended the data entities allowed for the ALLOCATABLE
attribute. Previously this attribute was limited to locally stored array variables. It

is now allowed on:

■ array components of structures

■ dummy arrays

■ array function results

Allocatable entities remain forbidden in all places where they may be storage-

associated (COMMONand EQUIVALENCEstatements). Allocatable array

components may appear in SEQUENCEtypes, but objects of such types are then

prohibited from COMMONand EQUIVALENCE. See Appendix C, page 157.
137

■ VALUEAttribute from Fortran 2000: f95 recognizes the VALUEtype declaration

attribute. Specifying a subprogram dummy input argument with this attribute

indicates that the actual argument is passed “by value”. See Appendix C,

page 157.

■ OpenMP 2.0 Fortran API Supported: f95 now supports the OpenMP 2.0 API

specifications for Fortran 95. Enhancements include WORKSHARE, REDUCTIONfor

arrays, THREADPRIVATEfor variables, COPYPRIVATEfor SINGLE directives.

See http://www.openmp.org/specs for the OpenMP 2.0 specifications. See

also Appendix E, page 180.

■ OpenMP Library Interface: The compiler now provides an include file

'omp_lib.h' and an interface module omp_lib for defining the interfaces to the

OpenMP Fortran library routines. See Appendix E, page 187.

■ Interprocedural Optimization (-xipo): This new compiler flag performs whole-

program optimizations by invoking an interprocedural analysis pass. Unlike

-xcrossfile , -xipo will perform optimizations across all object files in the link

step, and is not limited to just the source files on the compile command. -xipo is

particularly useful when compiling and linking large multi-file applications. See

Chapter 3, page 107.

■ VAX Fortran Structures: To aid migration of programs from f77 , f95 accepts VAX

Fortran STRUCTUREand UNIONstatements, a precursor of Fortran 95 "derived

types". See Appendix C, page 158.

■ Stream I/O: Another feature proposed for Fortran 2000 is a new "stream I/O"

scheme, which treats a data file as a continuous sequence of bytes, addressable by

a positive integer starting from 1. Enable stream I/O by declaring a file with

ACCESS='STREAM'. Position files with READor WRITEstatements with the

POS=integer_expression specifier. See Appendix C, page 158.

■ Global Program Checking: Invoked by the -Xlist options, GPC on f95 now

looks more like f77 , and includes suboptions -Xlistc -Xlist -Xlists
-Xlistv n and -Xlistw [n]. See Chapter 3, page 93.

■ Fortran Library Interface: f95 recognizes the include file system.inc for declaring

the proper data types for the Fortran library. Supply the statement

INCLUDE 'system.inc' in every routine that, references non-intrinsic Fortran

library routines to insure proper typing of return values. See the Fortran Library
Reference.

f95 New Features in Sun WorkShop 6 update 1:

The following lists new and changed features in the Fortran 95 compiler released

with Sun WorkShop 6 update 1:
138 Fortran User’s Guide • July 2001

■ UltraSPARC III Support: The -xtarget and -xchip options now accept ultra3 ,

and the compiler will generate optimized code for the UltraSPARC III processor.

See Chapter 3, page 120.

■ Prefetch added to -fast : The -xprefetch flag has been added to the -fast
option set. -fast automatically sets a number of optimization flags for best

execution speed on the compiling platform. Adding -xprefetch takes

advantage of the UltraSPARC II and III prefetch mechanism, and can add a

substantial performance gain in code with loops that process data, See Chapter 3,

page 59.

■ Support for the int2 Intrinsic: The Fortran 95 (and Fortran 77) compilers now

support the int2 intrinsic for conversion of data types to 2-byte integer. Use of

int2 as an intrinsic (M=int2(J)) appears in many legacy Fortran 77 codes, and

is implemented in the Fortran 95 compiler for compatibility. int is the preferred

Fortran 95 standard intrinsic (M=int(J,2)).

■ Mixed-Language Linking with -xlang : The new -xlang option provides an easy

way to link object files and libraries compiled by f77 with f95 object files. The

proper runtime environment is insured when using -xlang . See the CC(1) man

page, and Chapter 3, page 109.

f95 New Features in Sun WorkShop 6:

The following lists the new and changed features in the Fortran 95 compiler released

with Sun Performance WorkShop 6:

■ Compliance: The f95 is fully compliant with the Fortran 95 standard.

■ New Command: The Fortran 95 compiler can be invoked by either the f95 or f90
command.

■ Debugging Optimized Code: Restrictions limiting use of -g with other options

has been relaxed, allowing debugging parallelized and -O4 or -O5 optimized

codes with dbx and the Sun WorkShop debugger.

■ Source Filename Extensions: The compiler will accept source files with .f95 and

.f90 filename extensions as well as .F95 and .F90 .

■ Interval Arithmetic: This release implements a number of extensions that enable

interval arithmetic computations. See the Interval Arithmetic Programming
Reference, and interval_arithmetic README for details.

■ Enhanced Array Optimizations: The compiler now performs aggressive array

optimizations at levels -O4 and -O5 .

■ Hyper-Linked Diagnostic Messages: Sun WorkShop online help now interprets

f95 error diagnostics in the Building window, creating hypertext links from the

error message to descriptive online help.

■ OpenMP: The compiler accepts OpenMP explicit parallelization directives. The

OpenMP specifications can be viewed at http://www.openmp.org/
Appendix B Features Release History 139

■ AUTOSCOPEadded to Cray-style DOALLparallelization directive.

■ New/Changed Command-Line Options:

■ -aligncommon aligns COMMON block elements to specific byte boundaries.

■ -r8const promotes single-precision data constants to REAL*8.
■ -xinterval and -xia enable interval arithmetic extensions.

■ -xmemalign specifies general alignment in memory of data elements.

■ -mp=openmp and -openmp enable native compilation of OpenMP explicit

parallelization directives.

■ -xprefetch (for enabling UltraSPARC prefetch instructions) has been

expanded to include additional sub-options.

■ -xrecursive allows recursive calls from subprograms without the RECURSIVE
attribute.

■ -xtypemap has an expanded set of possible data type specifications.

■ -fast extended to set -O5 , -fsimple=2 , -xvector=yes , and -pad=common .

■ Use of f95 ’s parallelization features requires a Sun WorkShop HPC license.

New Features Released In f90 2.0:

The following new and changed features appeared in the f90 2.0 compiler released

with Sun WorkShop 5.0 over the earlier f90 1.2 release:

■ New options:

■ Most f77 options now recognized by f90.
■ –fpover detects floating-point overflows in I/O processing.

■ –xcode= code specifies the memory address model on SPARC platforms.

■ –xcommonchk enables runtime checking for inconsistent COMMON block

declarations.

■ –xprefetch allows the compiler to generate prefetch instructions on

UltraSPARC II platforms.

■ –xvector allows the compiler to replace certain math library calls within DO

loops with single calls to a vectorized math routine.

■ Changed options:

■ –xcrossfile[= n] – optional level number added.

■ –fns[={yes|no}] – optional yes/no added.

■ –Ztha – option now ignored.

■ New Features:

■ Compile for the 64-bit Solaris 7 environment on 64-bit SPARC platforms with

-xarch=v9 or v9a .

■ Support in the I/O library for large files (larger than 2 Gigabytes).

■ Support for large arrays on 64-bit Solaris operating environments.

■ Accepts Sun-style directives by default.

■ The REDUCTIONdirective accepts arrays in the list of variables.

■ SPARC: A TASKCOMMONdirective declares variables in COMMON to be private.
140 Fortran User’s Guide • July 2001

■ New optimization pragma allows setting the compilers optimization level on a

routine by routine basis.

■ I/O Differences (Comparing f90 2.0 against the 1.2 release):

■ NAMELIST Output Format:

1.2: All variables in a single print statement written to a single line without line

breaks. 2.0: Each variable printed to a separate line.

1.2: Comma used to separate values. 2.0: Single blank separates values.

1.2: Repeated values output using the r* form: 3*8.22 2.0: All repeated values

output explicitly: 8.22 8.22 8.22

1.2: No trailing zero printing integer floating point: 1. 2.0: Floating point

integers print with trailing zero: 1.0

1.2: Value printed may not be the same value when read into a variable with

the same type: 0.1 when read in will print as 0.100000001 2.0: Prints the

minimum number of digits required to ensure that a value written produces

the same value when read back in: 0.1 prints as 0.1

1.2: As required by the standard, zero value prints in exponent form. But 1.2

prints 0.E+0 2.0: Prints zero as 0.0E+0

1.2: Prints a space between the comma and the imaginary part of a complex

value: (1., 0.E+0) 2.0: No comma: (1.0,0.0E+0)

■ NAMELIST Input Format:

2.0: Allow the group name to be preceded by $ or & on input. The & is the only

form accepted by the Fortran 90 standard, and is what is written by

NAMELIST output.

2.0: Accepts $ as the symbol terminating input except if the last data item in the

group is CHARACTER, in which case it is treated as input data.

2.0: Allows NAMELIST input to start in the first column of a record.

■ PRINT * no longer comma-delimits output.

■ OPEN FORM='BINARY'permits I/O of non-standard raw text without record

marks: Opening a file with FORM='BINARY' has roughly the same effect as

FORM='UNFORMATTED', except that no record lengths are embedded in the file.

Without this data, there is no way to tell where one record begins, or ends.

Thus, it is impossible to BACKSPACEa FORM='BINARY' file, because there is no

way of telling where to backspace to. A READon a 'BINARY' file will read as

much data as needed to fill the variables on the input list. See Appendix C or

the Fortran 77 Language Reference for details.

■ Recursive I/O possible on different units (this is because the f90 I/O library is

"MT-Warm").
Appendix B Features Release History 141

■ RECL=2147483646 (231-2) is the default record length on sequential formatted,

list directed, and namelist output. (Default was 267).

■ ENCODEand DECODEare recognized and implemented as described in the

FORTRAN 77 Language Reference Manual.

■ Naming of scratch files is the same as with f77 .

■ Non-advancing I/O is enabled with ADVANCE='NO', as in:

write(*,'(a)',ADVANCE='NO') 'n= '
read(*,*) n

■ Handling of I/O on internal files follows the Fortran 90 standard more closely

than was the case with f90 1.2. Also, calls to routines that do internal I/O are

allowed on I/O lists. This was not allowed with 1.2 (or f77).

■ Operational Differences:

■ Modules are handled differently: Compiling a source code that contains one or

more MODULEunits now causes an information file (name.mod) to be

generated for each module. The name of this information file is the name of the

module, in lower case, with .mod suffix. A .mod file must be available before

the module can appear on a USEstatement. This means that all MODULEfiles

must be compiled (and the module information files created) before compiling

any file referencing a MODULEin a USEstatement

■ –ftrap=common is the default trapping mode.

■ Routines from the Sun Performance Library are automatically linked to

perform array operations.

■ New Language Elements:

■ Some Fortran 95 elements are implemented:

The attributes PUREand ELEMENTAL
The enhanced forms of MAXVALand MINVAL

■ New data types are recognized:

COMPLEX*32 REAL*16
INTEGER*8 (also *1 , *2)

LOGICAL*8 (also *1 , *2)

■ Some data representations have changed from f90 1.2:

INTEGER*2 is now 2 bytes, not 4

INTEGER*1 is now 1 byte, not 4

LOGICAL*2 is now 2 bytes, not 4

LOGICAL*1 is now 1 byte, not 4

This will affect programs that read binary data files containing these data items

that were written with f90 programs compiled with the 1.2 compiler. A

workaround would be to change the declarations to be INTEGER*4 or

LOGICAL*4 instead of *1 or *2 when compiling with 2.0.
142 Fortran User’s Guide • July 2001

■ Call by value, %VAL, is implemented in the same manner as f77 . The only

difference is that f90 2.0 allows REAL*8 and REAL*16 to be passed to C routines

as doubles and long doubles.

■ f77 and C Interoperability with f90 2.0:

■ To mix f77 and f90 object binaries, link with the f77 compatibility library,

libf77compat , and not with libF77 . For example, perform the link step with

f90 ..files.. -lf77compat even if the main program is an f77 program.

■ The structure of f90 COMMON is now compatible with f77 .

■ f90 scalar pointers are compatible with C pointers.

Fortran 77 New Features and Changes

This section lists the new features and behavior changes in f77 introduced with this

and previous releases.

f77 New Features in Sun WorkShop 6 update 2:

No new features were introduced in f77 with the release of Sun WorkShop 6

update 2.

f77 New Features in Sun WorkShop 6 update 1:

The release of Sun WorkShop 6 update 1 introduced the following new or changed

features in f77 :

■ UltraSPARC III Support: The -xtarget and -xchip options now accept ultra3 ,

and the compiler will generate optimized code for the UltraSPARC III processor.

See Chapter 3, page 120.

■ Prefetch added to -fast : The -xprefetch flag has been added to the -fast
option set. -fast automatically sets a number of optimization flags for best

execution speed on the compiling platform. Adding -xprefetch takes

advantage of the UltraSPARC II and III prefetch mechanism, and can add a

substantial performance gain in code with loops that process data, See Chapter 3,

page 59.
Appendix B Features Release History 143

f77 New Features in Sun WorkShop 6:

Sun WorkShop 6 Fortran 77 includes the following new and changed features:

■ I/O Extension: Opening a file with OPEN(FORM=’BINARY’) treats the file as a

sequential binary (unformatted) file with no record marks. See the Fortran 77
Language Reference for details.

■ Debugging Optimized Code: Restrictions limiting use of -g with other options

has been relaxed, allowing debugging parallelized and -O4 or -O5 optimized

codes with dbx and the Sun WorkShop debugger.

■ New/Changed Command-Line Options:

■ -aligncommon aligns COMMON block elements to specific byte boundaries.

■ -r8const promotes single-precision data constants to REAL*8

■ -xmemalign specifies general alignment in memory of data elements.

■ -xprefetch (for enabling UltraSPARC prefetch instructions) has been

expanded to include additional sub-options.

■ -xtypemap has an expanded set of possible data type specifications.

■ -fast extended to set -O5 , -fsimple=2 , -xvector=yes , and -pad=common .

■ Use of f77 ’s parallelization features requires a Sun WorkShop HPC license.

■ Hyper-Linked Diagnostic Messages: Sun WorkShop online help now interprets

f77 error diagnostics in the Building window, creating hypertext links from the

error message to descriptive online help.

Features in f77 5.0:

f77 5.0 included the following new and changed features:

■ New options:

■ –fpover detects floating-point overflows in I/O processing.

■ –xcode= code specifies the memory address model on SPARC platforms.

■ –xcommonchk enables runtime checking for inconsistent COMMON block

declarations.

■ –xmaxopt enables the OPT=n pragma and controls the maximum optimization

level allowed by OPTpragmas in the source code.

■ –xprefetch allows the compiler to generate prefetch instructions on

UltraSPARC II platforms.

■ –xvector allows the compiler to replace certain math library calls within DO

loops with single calls to a vectorized math routine.

■ Changed options:

■ –xcrossfile[= n] – optional level number added.

■ –fns[={yes|no}] – optional yes/no added.

■ –Ztha – option now ignored.

■ New Features:
144 Fortran User’s Guide • July 2001

■ Compile for the 64-bit Solaris 7 environment on 64-bit SPARC platforms with

-xarch=v9 or v9a .

■ Support in the I/O library for large files (larger than 2 Gigabytes).

■ Support for large arrays on 64-bit Solaris 7 environments.

■ Dynamic arrays (local arrays with dynamic size) implemented (see FORTRAN
77 Language Reference Manual).

■ The REDUCTIONdirective accepts arrays in the list of variables.

■ SPARC: A TASKCOMMONdirective declares variables in COMMON to be

private.

■ Fortran 90 style constants that allows specification of byte size (for example,

12345678_8 for a 64-bit, 8-byte, constant).

■ New optimization pragma allows setting the compilers optimization level on a

routine by routine basis.

■ Year 2000 safe date_and_time() library routine.

Features in f77 4.2:

f77 4.2 included the following features that were new or changed since the 4.0

release:

■ New options:

■ -dbl_align_all
■ -errtags=yes|no and -erroff= taglist
■ -stop_status=no|yes
■ -xcrossfile
■ -xlic_lib= libs
■ -xpp=fpp|cpp
■ -xtypemap= type:spec,.

■ Changed options:

■ Options -fround, -fsimple, -ftrap, -xprofile=tcov,
-xspace, -xunroll now available on Intel platforms.

■ -xtarget, -xarch, -xchip expanded for SPARC Ultra and Intel

platforms.

■ -vax= expanded to enable selection/deselection of individual VAX/VMS

Fortran features.

■ Default sourcefile preprocessor is fpp(1) rather than cpp(1).

FORTRAN 77 Upward Compatibility

The FORTRAN 77 5.0 source is compatible with earlier releases, except for minor

changes due to operating system changes and bug fixes.
Appendix B Features Release History 145

Fortran 3.0/3.0.1 to 4.0

Executables (a.out), libraries (.a), and object files (.o) compiled and linked in

Fortran 3.0/3.0.1 under Solaris 2 are compatible with Fortran 5.0 under Solaris 2.

BCP: Running Applications from Solaris 1

You must install the Binary Compatibility Package for the executable to run.

Executables compiled and linked in Solaris 1 do run in Solaris 2, but they do not run

as fast as when they are compiled and linked under the appropriate Solaris release.

Libraries (.a) and object files (.o) compiled and linked in Fortran 2.0.1 under Solaris

1 are not compatible with Fortran 5.0.
146 Fortran User’s Guide • July 2001

APPENDIX C

Fortran 95 Features and Differences

This appendix shows some of the major features differences between:

■ Standard Fortran 95 and Sun Fortran 95

■ FORTRAN 77 and Fortran 95

Features and Extensions

Sun WorkShop 6 Fortran 95 provides the following features.

Continuation Line Limits

f95 and f77 allow 99 continuation lines (1 initial and 99 continuation lines).

Standard Fortran 95 allows 19 for fixed-form and 39 for free-form.

Fixed-Form Source Lines

In fixed-form source, lines can be longer than 72 characters, but everything beyond

column 73 is ignored. Standard Fortran 95 only allows 72-character lines.

Directives

f95 allows directive lines starting with CDIR$, !DIR$, CMIC$, C$PRAGMA, or C$OMP,
in fixed format, or !DIR$, !MIC$, !$PRAGMA, or !$OMP in either fixed or free

format. For a summary of directives, see Appendix E. Standard Fortran 95 does not

consider directives.
147

■ Tabs in f95 force the rest of the line to be padded out to column 72. This may

cause unexpected results if the tab appears within a character string that is

continued onto the next line:

Source Form Assumed

The source form assumed by f95 depends on options, directives, and suffixes.

Files with a .f or .F suffix are assumed to be in fixed format. Files with a .f90 ,

.f95 , .F90 , or .F95 suffix are assumed to be in free format.

If the -free or -fixed option is used, it overrides the file name suffix. If either a

!DIR$ FREE or !DIR$ FIXED directive is used, it overrides the option and file name

suffix.

Mixing Forms

Some mixing of source forms is allowed.

■ In the same f95 command, some source files can be fixed form, some free.

■ In the same file, free form can be mixed with fixed form by using !DIR$ FREE and

!DIR$ FIXED directives.

Source file:
^Iprint *, "Tab on next line
^I1this continuation line starts with a tab."
^Iend

Running the code:
Tab on next line this continuation
 line starts with a tab.

TABLE C-1 F95 Source Form Command-line options

Option Action

-fixed Interpret all source files as Fortran fixed form

-free Interpret all source files as Fortran free form
148 Fortran User’s Guide • July 2001

Case

Sun Fortran 95 is case insensitive by default. That means that a variable AbcDeF is

treated as if it were spelled abcdef . Compile with the -U option to have the compiler

treat upper and lower case as unique.

Known Limits

A single Fortran 95 program unit can define up to 65,535 derived types and

16,777,215 distinct constants.

Boolean Type

f95 supports constants and expressions of Boolean type. There are no Boolean

variables or arrays, and there is no Boolean type statement.

Miscellaneous Rules Governing Boolean Type

■ Masking—A bitwise logical expression has a Boolean result; each of its bits is the

result of one or more logical operations on the corresponding bits of the

operands.

■ For binary arithmetic operators, and for relational operators:

■ If one operand is Boolean, the operation is performed with no conversion.

■ If both operands are Boolean, the operation is performed as if they were

integers.

■ No user-specified function can generate a Boolean result, although some

(nonstandard) intrinsics can.

■ Boolean and logical types differ as follows:

■ Variables, arrays, and functions can be of logical type, but they cannot be

Boolean type.

■ There is a LOGICAL statement, but no BOOLEANstatement.

■ A logical variable, constant, or expression represents only two values, .TRUE.
or .FALSE. A Boolean variable, constant, or expression can represent any

binary value.

■ Logical entities are invalid in arithmetic, relational, or bitwise logical

expressions. Boolean entities are valid in all three.
Appendix C Fortran 95 Features and Differences 149

Alternate Forms of Boolean Constants

f95 allows a Boolean constant (octal, hexadecimal, or Hollerith) in the following

alternate forms (no binary). Variables cannot be declared Boolean. Standard Fortran

does not allow these forms.

Octal

ddddddB, where d is any octal digit

■ You can use the letter B or b.

■ There can be 1 to 11 octal digits (0 through 7).

■ 11 octal digits represent a full 32-bit word, with the leftmost digit allowed to be 0,

1, 2, or 3.

■ Each octal digit specifies three bit values.

■ The last (right most) digit specifies the content of the right most three bit

positions (bits 29, 30, and 31).

■ If less than 11 digits are present, the value is right-justified—it represents the right

most bits of a word: bits n through 31. The other bits are 0.

■ Blanks are ignored.

Within an I/O format specification, the letter B indicates binary digits; elsewhere it

indicates octal digits.

Hexadecimal

X’ ddd’ or X" ddd" , where d is any hexadecimal digit

■ There can be 1 to 8 hexadecimal digits (0 through 9, A-F).

■ Any of the letters can be uppercase or lowercase (X, x , A-F, a-f).

■ The digits must be enclosed in either apostrophes or quotes.

■ Blanks are ignored.

■ The hexadecimal digits may be preceded by a + or - sign.

■ 8 hexadecimal digits represent a full 32-bit word and the binary equivalents

correspond to the contents of each bit position in the 32-bit word.

■ If less than 8 digits are present, the value is right-justified—it represents the right

most bits of a word: bits n through 31. The other bits are 0.
150 Fortran User’s Guide • July 2001

Hollerith

Accepted forms for Hollerith data are:

Above, “…” is a string of characters and n is the character count.

■ A Hollerith constant is type Boolean.

■ If any character constant is in a bitwise logical expression, the expression is

evaluated as Hollerith.

■ A Hollerith constant can have 1 to 4 characters.

Examples: Octal and hexadecimal constants.

Examples: Octal and hexadecimal in assignment statements.

Use of an octal or hexadecimal constant in an arithmetic expression can produce

undefined results and do not generate syntax errors.

nH… ’ …’H " …"H

nL… ’ …’L " …"L

nR… ’ …’R " …"R

Boolean Constant Internal Octal for 32-bit word

0B 00000000000

77740B 00000077740

X"ABE" 00000005276

X"-340" 37777776300

X'1 2 3' 00000000443

X'FFFFFFFFFFFFFFFF' 37777777777

i = 1357B

j = X"28FF"

k = X'-5A'
Appendix C Fortran 95 Features and Differences 151

Alternate Contexts of Boolean Constants

f95 allows BOZ constants in the places other than DATAstatements.

If these are assigned to a real variable, no type conversion occurs.

Standard Fortran allows these only in DATAstatements.

Abbreviated Size Notation for Numeric Data

Types

f95 allows the following nonstandard type declaration forms in declaration

statements, function statements, and IMPLICIT statements. The form in column one

is nonstandard Fortran 95, though in common use. The kind numbers in column two

can vary by vendor.

B’ bbb’ O’ ooo’ Z’ zzz’

B" bbb" O" ooo" Z" zzz"

TABLE C-2 Size Notation for Numeric Data Types

Nonstandard Declarator Short Form Meaning

INTEGER*1 INTEGER(KIND=1) INTEGER(1) One-byte signed integers

INTEGER*2 INTEGER(KIND=2) INTEGER(2) Two-byte signed integers

INTEGER*4 INTEGER(KIND=4) INTEGER(4) Four-byte signed integers

LOGICAL*1 LOGICAL(KIND=1) LOGICAL(1) One-byte logicals

LOGICAL*2 LOGICAL(KIND=2) LOGICAL(2) Two-byte logicals

LOGICAL*4 LOGICAL(KIND=4) LOGICAL(4) Four-byte logicals

REAL*4 REAL(KIND=4) REAL(4) IEEE single-precision

floating-point (Four-byte)

REAL*8 REAL(KIND=8) REAL(8) IEEE double-precision

floating-point (Eight-byte)

REAL*16 REAL(KIND=16) REAL(16) IEEE quad-precision

floating-point (Sixteen-byte)
152 Fortran User’s Guide • July 2001

Cray Pointers

A Cray pointer is a variable whose value is the address of another entity, called the

pointee.

f95 supports Cray pointers; Standard Fortran 95 does not.

Syntax

The Cray POINTERstatement has the following format:

Where pointer_name, pointee_name, and array_spec are as follows:

Example: Declare Cray pointers to two pointees.

COMPLEX*8 COMPLEX(KIND=4) COMPLEX(4) Single-precision complex

(Four-bytes each part)

COMPLEX*16 COMPLEX(KIND=8) COMPLEX(8) Double-precision complex

(Eight-bytes each part)

COMPLEX*32 COMPLEX(KIND=16) COMPLEX(16) Quad-precision complex

(Sixteen-bytes each part)

POINTER (pointer_name, pointee_name [array_spec]), …

pointer_name Pointer to the corresponding pointee_name.

pointer_name contains the address of pointee_name.

Must be: a scalar variable name (but not a derived type)

Cannot be: a constant, a name of a structure, an array, or a

function

pointee_name Pointee of the corresponding pointer_name
Must be: a variable name, array declarator, or array name

array_spec If array_spec is present, it must be explicit shape, (constant or

non-constant bounds), or assumed-size.

POINTER (p, b), (q, c)

TABLE C-2 Size Notation for Numeric Data Types (Continued)

Nonstandard Declarator Short Form Meaning
Appendix C Fortran 95 Features and Differences 153

The above example declares Cray pointer p and its pointee b, and Cray pointer q
and its pointee c .

Example: Declare a Cray pointer to an array.

The above example declares Cray pointer ix and its pointee x ; and declares x to be

an array of dimensions n by m+1.

Purpose of Cray Pointers

You can use pointers to access user-managed storage by dynamically associating

variables to particular locations in a block of storage.

Cray pointers allow accessing absolute memory locations.

Cray Pointers and Fortran 95 Pointers

Cray pointers are declared as follows:

POINTER (pointer_name, pointee_name [array_spec])

Fortran 95 pointers are declared as follows:

POINTER object_name

The two kinds of pointers cannot be mixed.

Features of Cray Pointers

■ Whenever the pointee is referenced, f95 uses the current value of the pointer as

the address of the pointee.

■ The Cray pointer type statement declares both the pointer and the pointee.

■ The Cray pointer is of type Cray pointer.

■ The value of a Cray pointer occupies one storage unit on 32-bit processors, and

two storage units on 64-bit SPARC V9 processors.

■ The Cray pointer can appear in a COMMONlist or as a dummy argument.

■ The Cray pointee has no address until the value of the Cray pointer is defined.

■ If an array is named as a pointee, it is called a pointee array.

Its array declarator can appear in:

 POINTER (ix, x(n, 0:m))
154 Fortran User’s Guide • July 2001

■ A separate type statement

■ A separate DIMENSIONstatement

■ The pointer statement itself

■ If the array declarator is in a subprogram, the dimensioning can refer to:

■ Variables in a common block, or

■ Variables that are dummy arguments

■ The size of each dimension is evaluated on entrance to the subprogram, not when

the pointee is referenced.

Restrictions on Cray Pointers

■ pointee_name must not be a variable typed CHARACTER*(*) .

■ If pointee_name is an array declarator, it must be explicit shape, (constant or non-

constant bounds), or assumed-size.

■ An array of Cray pointers is not allowed.

■ A Cray pointer cannot be:

■ Pointed to by another Cray pointer or by a Fortran pointer.

■ A component of a structure.

■ Declared to be any other data type.

■ A Cray pointer cannot appear in:

■ A PARAMETERstatement or in a type declaration statement that includes the

PARAMETERattribute.

■ A DATAstatement.

Restrictions on Cray Pointees

■ A Cray pointee cannot appear in a SAVE, DATA, EQUIVALENCE, COMMON, or

PARAMETERstatement.

■ A Cray pointee cannot be a dummy argument.

■ A Cray pointee cannot be a function value.

■ A Cray pointee cannot be a structure or a structure component.

■ A Cray pointee cannot be of a derived type.

Usage of Cray Pointers

Cray pointers can be assigned values as follows:

■ Set to an absolute address

Example: q = 0
Appendix C Fortran 95 Features and Differences 155

■ Assigned to or from integer variables, plus or minus expressions

Example: p = q + 100

■ Cray pointers are not integers. You cannot assign them to a real variable.

■ The LOCfunction (nonstandard) can be used to define a Cray pointer.

Example: p = LOC(x)

Example: Use Cray pointers as described above.

Remarks about the above example:

■ word64 refers to the contents of absolute address 64

■ blk is an array that occupies the first 128 words of memory

■ a is an array of length 1000 located in blank common

■ b follows a and is of length n
■ c follows b
■ a, b, and c are associated with pool
■ word64 is the same as blk(17) because Cray pointers are byte address and the

integer elements of blk are each 4 bytes long

SUBROUTINE sub (n)
COMMON pool(100000)
INTEGER blk(128), word64
REAL a(1000), b(n), c(100000-n-1000)
POINTER (pblk, blk), (ia, a), (ib, b), &

(ic, c), (address, word64)
DATA address / 64 /
pblk = 0
ia = LOC(pool)
ib = ia + 4000
ic = ib + n
...
156 Fortran User’s Guide • July 2001

Other Language Extensions

Extended ALLOCATABLEAttribute

Recent decisions by the Fortran 95 standards organizations have extended the data

entities allowed for the ALLOCATABLEattribute. Previously this attribute was limited

to locally stored array variables. It is now allowed with:

■ array components of structures

■ dummy arrays

■ array function results

Allocatable entities remain forbidden in all places where they may be storage-

associated: COMMONblocks and EQUIVALENCEstatements. Allocatable array

components may appear in SEQUENCEtypes, but objects of such types are then

prohibited from COMMONand EQUIVALENCE.

VALUEAttribute (Fortran 2000)

The f95 compiler recognizes the VALUEtype declaration attribute. This attribute has

been proposed for the Fortran 2000 standard.

Specifying a subprogram dummy input argument with this attribute indicates that

the actual argument is passed “by value”. The following example demonstrates the

use of the VALUEattribute with a C main program calling a Fortran 95 subprogram

with a literal value as an argument:

C code:
#include <stdlib.h>
int main(int ac, char *av[])
{

to_fortran(2);
}

Fortran code:
subroutine to_fortran(i)
integer, value :: i
print *, i
end
Appendix C Fortran 95 Features and Differences 157

Stream I/O (Fortran 2000)

A new “stream” I/O scheme has been proposed as part of the Fortran 2000 draft

standard. Stream I/O access treats a data file as a continuous sequence of bytes,

addressable by a positive integer starting from 1. Declare a stream I/O file with the

ACCESS=’STREAM’specifier on the OPENstatement. File positioning to a byte

address requires a POS=scalar_integer_expression specifier on a READor WRITE
statement. The INQUIRE statement accepts ACCESS=’STREAM’, a specifier

STREAM=scalar_character_variable, and POS=scalar_integer_variable.

STRUCTUREand UNION(VAX Fortran)

To aid the migration of programs from f77 , f95 accepts VAX Fortran STRUCTURE
and UNIONstatements, a precursor to the “derived types” in Fortran 95. For syntax

details see the FORTRAN 77 Language Reference manual.

The field declarations within a STRUCTUREcan be one of the following:

■ A substructure — either another STRUCTUREdeclaration, or a record that has

been previously defined.

■ A UNIONdeclaration.

■ A TYPEdeclaration, which can include initial values.

■ A derived type having the SEQUENCEattribute. (This is particular to f95 only.)

As with f77 , a POINTERstatement cannot be used as a field declaration.

f95 also allows:

■ Either ‘. ’ or ‘%’ can be used as a structure field dereference symbol:

struct.field or struct%field .

■ Structures can appear in a formatted I/O statement.

■ Structures can be initialized in a PARAMETERstatement; the format is the same as

a derived type initialization.

■ Structures can appear as components in a derived type, but the derived type must

be declared with the SEQUENCEattribute.

I/O Extensions

Some I/O extensions that appear in Sun Fortran 77 have been added to the Fortran

95 compiler:

■ NAMELIST Input Format:

The group name may be preceded by $ or & on input. The & is the only form

accepted by the Fortran 95 standard, and is what is written by NAMELIST output.
158 Fortran User’s Guide • July 2001

Accepts $ as the symbol terminating input except if the last data item in the group

is CHARACTERdata, in which case the $ is treated as input data.

Allows NAMELIST input to start in the first column of a record.

■ OPEN(...,FORM='BINARY') treats the file as binary data without record marks:

Opening a file with FORM='BINARY' has roughly the same effect as

FORM='UNFORMATTED', except that no record lengths are embedded in the file.

Without this data, there is no way to tell where one record begins, or ends. Thus,

it is impossible to BACKSPACEa FORM='BINARY' file, because there is no way of

telling where to backspace to. A READon a 'BINARY' file will read as much data

as needed to fill the variables on the input list.

■ WRITEstatement: Data is written to the file in binary, with as many bytes

transferred as specified by the output list.

■ READstatement: Data is read into the variables on the input list, transferring as

many bytes as required by the list. Because there are no record marks on the

file, there will be no “end-of-record” error detection. The only errors detected

are “end-of-file” or abnormal system errors.

■ INQUIRE statement: INQUIRE on a file opened with FORM=”BINARY” returns:

FORM=”BINARY”
ACCESS=”SEQUENTIAL”
DIRECT=”NO”
FORMATTED=”NO”
UNFORMATTED=”YES”
RECL= AND NEXTREC=are undefined

■ BACKSPACEstatement: Not allowed—returns an error.

■ ENDFILE statement: Truncates file at current position, as usual.

■ REWINDstatement: Repositions file to beginning of data, as usual.

■ Recursive I/O possible on different units (this is because the f95 I/O library is

"MT-Warm").

■ RECL=2147483646 (231-2) is the default record length on sequential formatted, list

directed, and namelist output.

■ ENCODEand DECODEare recognized and implemented as described in the

FORTRAN 77 Language Reference Manual.

■ Naming of scratch files is the same as with f77 .

■ Non-advancing I/O is enabled with ADVANCE='NO', as in:

write(*,'(a)',ADVANCE='NO') 'n= '
read(*,*) n
Appendix C Fortran 95 Features and Differences 159

Directives

A compiler directive directs the compiler to do some special action. Directives are

also called pragmas.

A compiler directive is inserted into the source program as one or more lines of text.

Each line looks like a comment, but has additional characters that identify it as more

than a comment for this compiler. For most other compilers, it is treated as a

comment, so there is some code portability.

Sun-style directives are the default with f95 (and f77). To switch to Cray-style

directives, use the -mp=cray compiler command-line flag.

A complete summary of Fortran directives appears in Appendix E.

Form of Special f95 Directive Lines

f95 recognizes its own special directives in addition to the general f95/f77
directives described in Chapter 2. These have the following syntax:

Fixed-Form Source

■ Put CDIR$ or !DIR$ in columns 1 through 5.

■ Directives are listed in columns 7 and beyond.

■ Columns beyond 72 are ignored.

■ An initial directive line has a blank in column 6.

■ A continuation directive line has a nonblank in column 6.

Free-Form Source

■ Put !DIR$ followed by a space anywhere in the line.

The !DIR$ characters are the first nonblank characters in the line

(actually, non-whitespace).

■ Directives are listed after the space.

■ An initial directive line has a blank, tab, or newline in the position immediately

after the !DIR$.

!DIR$ d1, d2, …
160 Fortran User’s Guide • July 2001

■ A continuation directive line has a character other than a blank, tab, or newline in

the position immediately after the !DIR$.

Thus, !DIR$ in columns 1 through 5 works for both free-form source and fixed-form

source.

FIXED and FREEDirectives

These directives specify the source form of lines following the directive line.

Scope

They apply to the rest of the file in which they appear, or until the next FREEor

FIXED directive is encountered.

Uses

■ They allow you to switch source forms within a source file.

■ They allow you to switch source forms for an INCLUDE file. You insert the

directive at the start of the INCLUDE file. After the INCLUDE file has been

processed, the source form reverts back to the form being used prior to processing

the INCLUDE file.

Restrictions

The FREE/FIXED directives:

■ Each must appear alone on a compiler directive line (not continued).

■ Each can appear anywhere in your source code. Other directives must appear

within the program unit they affect.

Example: A FREEdirective.

!DIR$ FREE
DO i = 1, n
a(i) = b(i) * c(i)
END DO
Appendix C Fortran 95 Features and Differences 161

Parallelization Directives

A parallelization directive is a special comment that directs the compiler to attempt to

parallelize the next DO loop. These are summarized in Appendix E and described in

the Fortran Programming Guide. f95 recognizes both f77 Sun and Cray style

parallelization directives, as well as the OpenMP Fortran API directives.

Note – Fortran parallelization features require a Forte HPC license.

Intrinsics

f95 supports some intrinsic procedures that are extensions beyond the standard.

TABLE C-3 Nonstandard Intrinsics

Name Definition Function Type Argument Types Arguments Notes

COT Cotangent real real ([X=] x) P, E

DDIM Positive difference double precision double precision ([X=] x,[Y=] y) P, E

LEADZ Get the number of

leading 0 bits

integer Boolean, integer, real,

or pointer

([I=] i) NP, I

POPCNT Get the number of set

bits

integer Boolean, integer, real,

or pointer

([I=] i) NP, I

POPPAR Calculate bit

population parity

integer Boolean, integer, real,

or pointer

([X=] x) NP, I

Notes on the above table:

P The name can be passed as an argument.

NP The name cannot be passed as an argument.

E External code for the intrinsic is called at run time.

I f95 generates inline code for the intrinsic procedure.
162 Fortran User’s Guide • July 2001

Compatibility with FORTRAN 77

Standard-conforming, fixed-format (filename.f) FORTRAN 77 source code is

compatible with Fortran 95. Use of non-standard extensions, such as VMS Fortran

features, are not compatible and may not compile with f95 .

Incompatibility Issues Between f95 and f77

The following lists some of the known incompatibility issues that arise when

compiling and testing f77 programs with this release of f95 . These are due to either

missing comparable features in f95 , or differences in behavior. These items are non-

standard extensions to Fortran 77 supported in f77 but not in f95 .

■ I/O (see also page 158 and page 164):

■ List-directed output uses different formats.

■ Variable format expressions are not available in Fortran 95.

■ You cannot open a file with ACCESS=’APPEND’in Fortran 95.

■ f95 does not allow BACKSPACEor ENDFILE on a direct-access file.

■ Fortran 95 requires explicit field width specifications in format edit descriptors.

For example, FORMAT(I) is not allowed.

■ f95 does not recognize f77 escape sequences (for example, \n \t \’) in

output formats.

■ f95 does not recognize FILEOPT= in OPENstatements.

■ f95 does not recognize the ' n form for specifying a record number in direct

access I/O: READ (2 '13) X,Y,Z

■ Data Types, Declarations, and Usage:

■ If it appears in a program unit, the IMPLICIT statement in Fortran 95 must

precede the first declarative statement in the unit.

■ f95 allows only 7 array subscripts; f77 allows 20.

■ LOGICALand INTEGERvariables cannot be used interchangeably in Fortran 95.

■ Fortran 95 Cray pointers cannot appear in some intrinsic calls.

■ f77 -style initializations using slashes on type declarations are not accepted in

Fortran 95.

■ Fortran 95 does not allow assigning Cray character pointers to non-pointer

variables to other Cray pointers that are not character pointers.

■ Fortran 95 does not allow the same Cray pointer to point to items of different

type sizes (for example, REAL*8 and INTEGER*4).

■ Fortran 95 does not accept the BYTEdata type.

■ Fortran 95 does not allow non-integers to be used as array subscripts.

■ f95 does not allow relational operators .EQ. and .NE. to be used with logical

operands.
Appendix C Fortran 95 Features and Differences 163

■ Programs, Subroutines, Functions, Statements:

■ The PROGRAMstatement requires a name in Fortran 95.

■ The f95 maximum length for names is 31 characters.

■ Functions in Fortran 95 cannot be called by a CALL statement, as if they were

subroutines.

■ Functions in Fortran 95 must have their return value defined.

■ While f77 allows mixed argument types to appear in some specific intrinsic

functions, f95 does not.

■ f95 does not recognize debugging comments (comment lines with "D" in

column one).

■ Tab-formatting in Fortran 95 does not allow source lines to extend beyond

column 72.

■ f95 tab-formatting will pad character strings to column 72 if they extend over

a continuation line. (See page 148)

■ Command-line Options:

■ f95 does not recognize -vax compiler options.

I/O Compatibility

f77 and f95 are generally I/O compatible for binary I/O, since f95 links to the f77
compatibility library.

Such compatibility includes the following two situations:

■ In the same program, you can write some records in f95 , then read them in f77 .

■ An f95 program can write a file. Then an f77 program can read it.

The numbers read back in may or may not equal the numbers written out.

■ Unformatted: The numbers read back in do equal the numbers written out.

■ Floating-point formatted: The numbers read back in can be different from the

numbers written out. This is caused by slightly different base conversion

routines, or by different conventions for uppercase/lowercase, spaces, plus or

minus signs, and so forth.

Examples: 1.0e12 , 1.0E12 , 1.0E+12

■ List-directed: The numbers read back in can be different from the numbers

written out. This can be caused by various layout conventions with commas,

spaces, zeros, repeat factors, and so forth.

Example: ’0.0’ as compared to ’.0’

Example: ’ 7’ as compared to ’7’

Example: ’3, 4, 5’ as compared to ’3 4 5’
164 Fortran User’s Guide • July 2001

Example: ’3*0’ as compared to ’0 0 0’

The above results from: integer::v(3)=(/0,0,0/); print *,v

Example: ’0.333333343’ as compared to ’0.333333’

The above results from PRINT *, 1.0/3.0

Linking with f77 -Compiled Routines
■ To mix f77 and f95 object binaries, link with f95 and the f77 compatibility

library, libf77compat , and not with libF77 . The -xlang=f77 option provides

an easy way to do this. Perform the link step with f95 even if the main program

is an f77 program

■ Example: f95 main and f77 subroutine.

■ The FORTRAN 77 library is generally compatible with f95 .

demo% cat m.f95
CHARACTER*74 :: c = ’This is a test.’
 CALL echo1(c)
END
demo$ cat s.f

SUBROUTINE echo1(a)
CHARACTER*74 a
PRINT*, a
RETURN
END

demo% f77 -c -silent s.f
demo% f95 -xlang=f77 m.f95 s.o
demo% a.out
 This is a test.
demo%
Appendix C Fortran 95 Features and Differences 165

Example: f95 main calls a routine from the FORTRAN 77 library.

See dtime (3F).

Intrinsics

The Fortran 95 standard supports the following intrinsic functions that FORTRAN

77 does not have.

If you use one of these names in your program, you must add an EXTERNAL
statement to make f95 use your function rather than the intrinsic one.

Fortran 95 intrinsics:

ADJUSTL,ADJUSTR,ALL,ALLOCATED,ANY,BIT_SIZE,COUNT,CSHIFT,
DIGITS,DOT_PRODUCT,EOSHIFT,EPSILON,EXPONENT,HUGE,KIND,
LBOUND,LEN_TRIM,MATMUL,MAXEXPONENT,MAXLOC,MAXVAL,MERGE,
MINEXPONENT,MINLOC,MINVAL,NEAREST,PACK,PRECISION,PRESENT,
PRODUCT,RADIX,RANGE,REPEAT,RESHAPE,RRSPACING,SCALE,SCAN,
SELECTED_INT_KIND,SELECTED_REAL_KIND,SET_EXPONENT,SHAPE,
SIZE,SPACING,SPREAD,SUM,TINY,TRANSFER,TRANSPOSE,UBOUND,
UNPACK,VERIFY

demo% cat tdtime.f95
 REAL e, dtime, t(2)
 e = dtime(t)
 DO i = 1, 100000

as = as + cos(sqrt(float(i)))
 END DO
 e = dtime(t)
 PRINT *, 'elapsed:', e, ', user:', t(1), ', sys:', t(2)
 END
demo% f95 tdtime.f95
demo% a.out
elapsed: 0.14 , user: 0.14 , sys: 0.0E+0
demo%
166 Fortran User’s Guide • July 2001

Forward Compatibility

Future releases of f95 are intended to be source code compatible with this release.

Module information files generated by this release of f95 are not guaranteed to be

compatible with future releases.

Mixing Languages

On Solaris systems, routines written in C can be combined with Fortran programs,

since these languages have common calling conventions.

Module Files

Compiling a file containing a Fortran 95 MODULEgenerates a module interface file

(.mod file) for every MODULEencountered in the source. The file name is derived

from the name of the MODULE; file xyz.mod (all lowercase) will be created for

MODULE xyz.

Compilation also generates a .o module implementation object file for the source

file containing the MODULEstatements. Link with the module implementation object

file along with the all other object files to create an executable.

The compiler creates module interface files and implementation object files in the

current working directory. It looks in the current working directory for the interface

files when compiling USEmodulename statements. The -Mpath option allows you to

give the compiler an additional path to search. Module implementation object files

must be listed explicitly on the command line for the link step.

Typically, programmers define one MODULEper file and assign the same name to the

MODULEand the source file containing it. However, this is not a requirement.

The .mod files cannot be stored into an archive file, or concatenated into a single file.
Appendix C Fortran 95 Features and Differences 167

Example:

In this example, all the files are compiled at once. The module source files appear

first before their use in the main program. Compilation creates the files:

main
main.o
one.mod
mod_one.o
two.mod
mod_two.o

The next example compiles each unit separately and links them together.

When compiling main.f90 , the compiler searches the current directory for

one.mod and two.mod . These must be compiled before compiling any files that

reference the modules on USEstatements. The link step requires the module

implementation object files mod_one.o and mod_two.o appear along with all other

object files to create the executable.

demo% cat mod_one.f90
MODULE one

...
END MODULE

demo% cat mod_two.f90
MODULE two

...
END MODULE

demo% cat main.f90
USE one
USE two

...
END

demo% f95 -o main mod_one.f90 mod_two.f90 main.f90

demo% f95 -c mod_one.f90 mod_two.f90
demo% f95 -c main.f90
demo% f95 -o main main.o mod_one.o mod_two.o
168 Fortran User’s Guide • July 2001

APPENDIX D

–xtarget Platform Expansions

This Appendix details the –xtarget option platform system names and their

expansions.

Each specific value for –xtarget expands into a specific set of values for the

-xarch , –xchip , and –xcache options, as shown in the following table. Run

fpversion (1) to determine the target definitions on any system.

For example:

–xtarget=sun4/15

means

–xarch=v8a –xchip=micro –xcache=2/16/1

TABLE D-1 -xtarget Expansions

-xtarget= -xarch -xchip -xcache

generic generic generic generic

generic64 v9 generic generic

cs6400 v8 super 16/32/4:2048/64/1

entr150 v8plusa ultra 16/32/1:512/64/1

entr2 v8plusa ultra 16/32/1:512/64/1

entr2/1170 v8plusa ultra 16/32/1:512/64/1

entr2/1200 v8plusa ultra 16/32/1:512/64/1

entr2/2170 v8plusa ultra 16/32/1:512/64/1

entr2/2200 v8plusa ultra 16/32/1:512/64/1

entr3000 v8plusa ultra 16/32/1:512/64/1

entr4000 v8plusa ultra 16/32/1:512/64/1
169

entr5000 v8plusa ultra 16/32/1:512/64/1

entr6000 v8plusa ultra 16/32/1:512/64/1

sc2000 v8 super 16/32/4:2048/64/1

solb5 v7 old 128/32/1

solb6 v8 super 16/32/4:1024/32/1

ss1 v7 old 64/16/1

ss10 v8 super 16/32/4

ss10/20 v8 super 16/32/4

ss10/30 v8 super 16/32/4

ss10/40 v8 super 16/32/4

ss10/402 v8 super 16/32/4

ss10/41 v8 super 16/32/4:1024/32/1

ss10/412 v8 super 16/32/4:1024/32/1

ss10/50 v8 super 16/32/4

ss10/51 v8 super 16/32/4:1024/32/1

ss10/512 v8 super 16/32/4:1024/32/1

ss10/514 v8 super 16/32/4:1024/32/1

ss10/61 v8 super 16/32/4:1024/32/1

ss10/612 v8 super 16/32/4:1024/32/1

ss10/71 v8 super2 16/32/4:1024/32/1

ss10/712 v8 super2 16/32/4:1024/32/1

ss10/hs11 v8 hyper 256/64/1

ss10/hs12 v8 hyper 256/64/1

ss10/hs14 v8 hyper 256/64/1

ss10/hs21 v8 hyper 256/64/1

ss10/hs22 v8 hyper 256/64/1

ss1000 v8 super 16/32/4:1024/32/1

ss1plus v7 old 64/16/1

ss2 v7 old 64/32/1

TABLE D-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache
170 Fortran User’s Guide • July 2001

ss20 v8 super 16/32/4:1024/32/1

ss20/151 v8 hyper 512/64/1

ss20/152 v8 hyper 512/64/1

ss20/50 v8 super 16/32/4

ss20/502 v8 super 16/32/4

ss20/51 v8 super 16/32/4:1024/32/1

ss20/512 v8 super 16/32/4:1024/32/1

ss20/514 v8 super 16/32/4:1024/32/1

ss20/61 v8 super 16/32/4:1024/32/1

ss20/612 v8 super 16/32/4:1024/32/1

ss20/71 v8 super2 16/32/4:1024/32/1

ss20/712 v8 super2 16/32/4:1024/32/1

ss20/hs11 v8 hyper 256/64/1

ss20/hs12 v8 hyper 256/64/1

ss20/hs14 v8 hyper 256/64/1

ss20/hs21 v8 hyper 256/64/1

ss20/hs22 v8 hyper 256/64/1

ss2p v7 powerup 64/32/1

ss4 v8a micro2 8/16/1

ss4/110 v8a micro2 8/16/1

ss4/85 v8a micro2 8/16/1

ss5 v8a micro2 8/16/1

ss5/110 v8a micro2 8/16/1

ss5/85 v8a micro2 8/16/1

ss600/120 v7 old 64/32/1

ss600/140 v7 old 64/32/1

ss600/41 v8 super 16/32/4:1024/32/1

ss600/412 v8 super 16/32/4:1024/32/1

ss600/51 v8 super 16/32/4:1024/32/1

TABLE D-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache
Appendix D –xtarget Platform Expansions 171

ss600/512 v8 super 16/32/4:1024/32/1

ss600/514 v8 super 16/32/4:1024/32/1

ss600/61 v8 super 16/32/4:1024/32/1

ss600/612 v8 super 16/32/4:1024/32/1

sselc v7 old 64/32/1

ssipc v7 old 64/16/1

ssipx v7 old 64/32/1

sslc v8a micro 2/16/1

sslt v7 old 64/32/1

sslx v8a micro 2/16/1

sslx2 v8a micro2 8/16/1

ssslc v7 old 64/16/1

ssvyger v8a micro2 8/16/1

sun4/110 v7 old 2/16/1

sun4/15 v8a micro 2/16/1

sun4/150 v7 old 2/16/1

sun4/20 v7 old 64/16/1

sun4/25 v7 old 64/32/1

sun4/260 v7 old 128/16/1

sun4/280 v7 old 128/16/1

sun4/30 v8a micro 2/16/1

sun4/330 v7 old 128/16/1

sun4/370 v7 old 128/16/1

sun4/390 v7 old 128/16/1

sun4/40 v7 old 64/16/1

sun4/470 v7 old 128/32/1

sun4/490 v7 old 128/32/1

sun4/50 v7 old 64/32/1

sun4/60 v7 old 64/16/1

TABLE D-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache
172 Fortran User’s Guide • July 2001

sun4/630 v7 old 64/32/1

sun4/65 v7 old 64/16/1

sun4/670 v7 old 64/32/1

sun4/690 v7 old 64/32/1

sun4/75 v7 old 64/32/1

ultra v8plusa ultra 16/32/1:512/64/1

ultra1/140 v8plusa ultra 16/32/1:512/64/1

ultra1/170 v8plusa ultra 16/32/1:512/64/1

ultra1/200 v8plusa ultra 16/32/1:512/64/1

ultra2 v8plusa ultra2 16/32/1:512/64/1

ultra2/1170 v8plusa ultra 16/32/1:512/64/1

ultra2/1200 v8plusa ultra 16/32/1:1024/64/1

ultra2/1300 v8plusa ultra2 16/32/1:2048/64/1

ultra2/2170 v8plusa ultra 16/32/1:512/64/1

ultra2/2200 v8plusa ultra 16/32/1:1024/64/1

ultra2/2300 v8plusa ultra2 16/32/1:2048/64/1

ultra2e v8plusa ultra2e 16/32/1:256/64/4

ultra2i v8plusa ultra2i 16/32/1:512/64/1

ultra3 v8plusa ultra3 64/32/4:8192/512/1

TABLE D-1 -xtarget Expansions (Continued)

-xtarget= -xarch -xchip -xcache
Appendix D –xtarget Platform Expansions 173

174 Fortran User’s Guide • July 2001

APPENDIX E

Fortran Directives Summary

This appendix summarizes the directives recognized by the f77 and f95 Fortran

compilers:

■ General Fortran Directives

■ Sun Parallelization Directives

■ Cray Parallelization Directives

■ OpenMP Fortran 95 Directives, Library Routines, and Environment

Note – Fortran parallelization features require a Sun WorkShop HPC license.

General Fortran Directives
General directives accepted by both f77 and f95 are described in Chapter 2.

TABLE E-1 Summary of General Fortran Directives

Format

C$PRAGMAkeyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SUNkeyword (a [, a] …) [, keyword (a [, a] …)] ,…
C$PRAGMA SPARCkeyword (a [, a] …) [, keyword (a [, a] …)] ,…

Comment-indicator in column 1 may be c , C, ! , or *. (We use C in these examples.

f95 free-format must use ! .)

C Directive C$PRAGMA C(list)

Declares a list of names of external functions as C language

routines.
175

UNROLLDirective C$PRAGMA SUN UNROLL=n

Advises the compiler that the following loop can be unrolled to a

length n.

WEAKDirective C$PRAGMA WEAK(name[=name2])

Declares name to be a weak symbol, or an alias for name2.

OPTDirective C$PRAGMA SUN OPT=n

Set optimization level for a subprogram to n.

NOMEMDEPDirective C$PRAGMA SUN NOMEMDEP

Assert there are no memory dependencies in the following loop.

(Requires -parallel or -explicitpar .)

PIPELOOPDirective C$PRAGMA SUN PIPELOOP=n

Assert dependency in loop between iterations n apart.

PREFETCHDirectives C$PRAGMA SPARC_PREFETCH_READ_ONCE (name)
C$PRAGMA SPARC_PREFETCH_READ_MANY (name)
C$PRAGMA SPARC_PREFETCH_WRITE_ONCE (name)
C$PRAGMA SPARC_PREFETCH_WRITE_MANY (name)

Request compiler generate prefetch instructions for references to

name. (Requires -xprefetch option.)

TABLE E-1 Summary of General Fortran Directives (Continued)
176 Fortran User’s Guide • July 2001

Special Fortran 95 Directives
The following directives are only available with f95 . See Appendix C for details.

Sun Parallelization Directives
Sun-style parallelization directives are the default (-mp=sun compiler option), and

are detailed in the chapter on parallelization in the Fortran Programming Guide.

TABLE E-2 Special Fortran 95 Directives

Format !DIR$ directive : initial line

!DIR$& ... : continuation line

With fixed-format source, C is also accepted as a directive-indicator:

CDIR$ directive... ; the line must start in column 1.

WIth free-format source, the line may be preceded by blanks.

FIXED/FREE
Directives

!DIR$ FREE
!DIR$ FIXED

These directives specify the source format of the lines following the

directive. They apply to the rest of the source file in which they

appear, up to the next FREEor FIXED directive.

TABLE E-3 Sun-Style Parallelization Directives Summary

Format C$PARdirective [optional_qualifiers] : initial line

C$PAR&[more_qualifiers] : continuation line

Fixed format, the directive-indicator may be C (as shown), c , * , or ! .

Separate multiple qualifiers with commas. Characters beyond

column 72 ignored unless -e compiler option specified.

TASKCOMMON
Directive

C$PAR TASKCOMMONblock_name

Declares variables in common block block_name as thread-private:

private to a thread, but global within the thread. Declaring a

common block TASKCOMMONrequires that this directive appear after

every common declaration of that block.
Appendix E Fortran Directives Summary 177

DOALLDirective C$PAR DOALL[qualifiers]

Parallelize DO loop that follows. Qualifiers are:

PRIVATE(list) declare names on list PRIVATE

SHARED(list) declare names on list SHARED

MAXCPUS(n) use no more than n threads

READONLY(list) listed variables not modified in loop

SAVELAST save last value of all private variables

STOREBACK(list) save last value of listed variables

REDUCTION(list) listed variables are reduction variables

SCHEDTYPE(type) use scheduling type: (default is STATIC)

STATIC
SELF(nchunk)

FACTORING[(m)]

GSS[(m)]

DOSERIALDirective C$PAR DOSERIAL

Disables parallelization of the loop that follows.

DOSERIAL* Directive C$PAR DOSERIAL*

Disables parallelization of the loop nest that follows.

TABLE E-3 Sun-Style Parallelization Directives Summary (Continued)
178 Fortran User’s Guide • July 2001

Cray Parallelization Directives
Cray-style parallelization directives are detailed in the chapter on parallelization in

the Fortran Programming Guide. Requires -mp=cray compiler option.

TABLE E-4 Cray Parallelization Directives Summary

Format CMIC$ directive qualifiers : initial line

CMIC$& [more_qualifiers] : continuation line

Fixed format. Directive-indicator may be C (as shown here), c , * , or

! . With f95 free-format, leading blanks can appear before !MIC$.

DOALLDirective CMIC$ DOALL SHARED(list), PRIVATE(list) [, more_qualifiers]

Parallelize loop that follows. Qualifiers are:

Scoping qualifiers are required (unless list is empty)—all variables

in the loop must appear in a PRIVATE or SHAREDclause:

PRIVATE(list) declare names on list PRIVATE

SHARED(list) declare names on list SHARED

AUTOSCOPE automatically determine scope of variables

The following are optional:

MAXCPUS(n) use no more than n threads

SAVELAST save last value of all private variables

Only one scheduling qualifier may appear:

GUIDED equivalent to Sun-style GSS(64)
SINGLE equivalent to Sun-style SELF(1)
CHUNKSIZE(n) equivalent to Sun-style SELF(n)
NUMCHUNKS(m) equivalent to Sun-style SELF(n/m)

The default scheduling is Sun-style STATIC, for which there is no

Cray-style equivalent. Interpretations of these scheduling qualifiers

differ between Sun and Cray style. Check the Fortran Programming
Guide for details.

TASKCOMMON
Directive

CMIC$ TASKCOMMONblock_name

Declares variables in the named common block as thread-private—

private to a thread, but global within the thread. Declaring a

common block TASKCOMMONrequires that this directive appear

immediately after every common declaration of that block.

DOSERIALDirective CMIC$ DOSERIAL

Disables parallelization of the loop that follows.

DOSERIAL* Directive CMIC$ DOSERIAL*

Disables parallelization of the loop nest that follows.
Appendix E Fortran Directives Summary 179

Fortran 95 OpenMP Directives
The Sun Fortran 95 compiler supports the OpenMP 2.0 Fortran API. The -openmp
compiler flag enables these directives. (See page 79).

This section lists the OpenMP directives, library routines, and environment variables

supported by f95 . For details about parallel programming with OpenMP, see the

OpenMP 2.0 Fortran specification at http://www.openmp.org/.

The following table summarizes the OpenMP directives supported by f95 . Items

enclosed in square brackets ([...]) are optional. The compiler permits comments to

follow an exclamation mark (!) on the same line as the directive. When compiling

with -openmp , the CPP/FPP variable _OPENMPis defined and may be used for

conditional compilation within #ifdef _OPENMP and #endif .

TABLE E-5 Summary of OpenMP Directives in Fortran 95

Directive Format (Fixed) C$OMPdirective optional_clauses...
!$OMP directive optional_clauses...
*$OMPdirective optional_clauses...

Must start in column one; continuation lines must have a non-

blank or non-zero character in column 6

Directive Format (Free) !$OMP directive optional_clauses...

May appear anywhere, preceded by whitespace; an ampersand

(&) at the end of the line identifies a continued line.

Conditional Compilation Source lines beginning with !$, C$, or *$ in columns 1 and 2

(fixed format), or !$ preceded by white space (free format) are

compiled only when compiler option -openmp , or -mp=openmp
is specified.

PARALLELDirective !$OMP PARALLEL[clause[[,] clause]...]

block of Fortran statements with no transfer in or out of block
!$OMP END PARALLEL

Defines a parallel region: a block of code that is to be executed by

multiple threads in parallel. clause can be one of the following:

PRIVATE(list), SHARED(list), DEFAULT(option),

FIRSTPRIVATE(list), REDUCTION(list), IF (logical_expression),

COPYIN(list), NUM_THREADS(integer_expression).
180 Fortran User’s Guide • July 2001

DODirective !$OMP DO[clause[[,] clause]...]

do_loop statements block
[!$OMP END DO[NOWAIT]]

The DOdirective specifies that the iterations of the DO loop that

immediately follows must be executed in parallel. This directive

must appear within a parallel region. clause can be one of the

following: PRIVATE(list), FIRSTPRIVATE(list),
LASTPRIVATE(list), REDUCTION(list), SCHEDULE(type),

ORDERED.

SECTIONSDirective !$OMP SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]
block of Fortran statements with no transfer in or out
[!$OMP SECTION
optional block of Fortran statements]

...

!$OMP END SECTIONS[NOWAIT]

Encloses a non-iterative section of code to be divided among

threads in the team. Each section is executed once by a thread in

the team. clause can be one of the following: PRIVATE(list),
FIRSTPRIVATE(list), LASTPRIVATE(list), REDUCTION(list).

Each section is preceded by a SECTIONdirective, which is

optional for the first section.

SINGLE Directive !$OMP SINGLE [clause[[,] clause]...]

block of Fortran statements with no transfer in or out
!$OMP END SINGLE[end-modifier]

The statements enclosed by SINGLE is to be executed by only

one thread in the team. Threads in the team that are not

executing the SINGLE block of statements wait at the END
SINGLE directive unless NOWAITis specified. clause can be one

of: PRIVATE(list), FIRSTPRIVATE(list). end-modifier is either

COPYPRIVATE(list) [[,]COPYPRIVATE(list...)] or NOWAIT.

WORKSHAREDirective !$OMP WORKSHARE
block of Fortran statements
!$OMP END WORKSHARE[NOWAIT]

Divides the work of executing the enclosed code block into

separate units of work, and causes the threads of the team to

share the work such that each unit is executed only once.

TABLE E-5 Summary of OpenMP Directives in Fortran 95 (Continued)
Appendix E Fortran Directives Summary 181

PARALLEL DODirective !$OMP PARALLEL DO[clause[[,] clause]...]

do_loop statements block
[!$OMP END PARALLEL DO]

Shortcut for specifying a parallel region that contains a single

DO loop: a PARALLELdirective followed immediately by a DO
directive. clause can be any of the clauses accepted by the

PARALLELand DOdirectives.

PARALLEL SECTIONS
Directive

!$OMP PARALLEL SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]
block of Fortran statements with no transfer in or out
[!$OMP SECTION
optional block of Fortran statements]

...

!$OMP END PARALLEL SECTIONS

Shortcut for specifying a parallel region that contains a single

SECTIONSdirective: a PARALLELdirective followed by a

SECTIONSdirective. clause can be any of the clauses accepted

by the PARALLELand SECTIONSdirectives.

PARALLEL WORKSHARE
Directive

!$OMP PARALLEL WORKSHARE[clause[[,] clause]...]

block of Fortran statements
!$OMP END PARALLEL WORKSHARE

Provides a shortcut for specifying a parallel region that contains

a single WORKSHAREdirective. clause can be one of the clauses

accepted by either the PARALLELor WORKSHAREdirective.

Synchronization Directives

MASTERDirective !$OMP MASTER
block of Fortran statements with no transfers in or out
!$OMP END MASTER

The block of statements enclosed by these directives is executed

only by the master thread of the team. The other threads skip

this block and continue. There is no implied barrier on entry to

or exit from the master section.

TABLE E-5 Summary of OpenMP Directives in Fortran 95 (Continued)
182 Fortran User’s Guide • July 2001

CRITICAL Directive !$OMP CRITICAL [(name)]

block of Fortran statements with no transfers in or out
!$OMP END CRITICAL [(name)]

Restrict access to the statement block enclosed by these

directives to only one thread at a time. The optional name
argument identifies the critical region. All unnamed CRITICAL
directives map to the same name. Critical section names are

global entities of the program. If a name conflicts with any other

entity, the behavior of the program is undefined. If name
appears on the CRITICAL directive, it must also appear on the

END CRITICAL directive.

BARRIERDirective !$OMP BARRIER

Synchronizes all the threads in a team. Each thread waits until

all the others in the team have reached this point.

ATOMICDirective !$OMP ATOMIC

Ensures that a specific memory location is to be updated

atomically, rather than exposing it to the possibility of multiple,

simultaneous writing threads.

The directive applies only to the immediately following

statement, which must be one of these forms:

x = x operator expression
x = expression operator x
x = intrinsic(x, expression)
x = intrinsic(expression, x)
where:

• x is a scalar of intrinsic type

• expression is a scalar expression that does not reference x
• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of + - * / .AND. .OR. .EQV. .NEQV.

This implementation replaces all ATOMIC directives by enclosing the
target statement in a critical section.

TABLE E-5 Summary of OpenMP Directives in Fortran 95 (Continued)
Appendix E Fortran Directives Summary 183

FLUSHDirective !$OMP FLUSH[(list)]

Thread-visible variables are written back to memory at the

point at which this directive appears. The FLUSHdirective only

provides consistency between operations within the executing

thread and global memory. The optional list consists of a

comma-separated list of variables that need to be flushed. The

FLUSHdirective is implied for the following directives:

BARRIER, CRITICAL /ENDCRITICAL, ENDDO, END SECTIONS,
ENDSINGLE, ENDWORKSHARE, ORDERED/ENDORDERED,

PARALLEL/ENDPARALLEL, PARALLEL/ENDPARALLELDO,
PARALLELSECTIONS/ENDPARALLELSECTIONS,
PARALLELWORKSHARE/ENDPARALLELWORKSHARE. FLUSHis not

implied if NOWAITis specified. It is not implied by: DO,

MASTER/ENDMASTER, SECTIONS, SINGLE, and WORKSHARE.

ORDEREDDirective !$OMP ORDERED
block of Fortran statements with no transfers in or out
!$OMP END ORDERED

The enclosed block of statements are executed in the order that

iterations would be executed in a sequential execution of the

loop. It can appear only in the dynamic extent of a DOor

PARALLEL DOdirective. The ORDEREDclause must be specified

on the closest DOdirective enclosing the block.

Data Environment Directives

THREADPRIVATE
Directive

!$OMP THREADPRIVATE(list)

Makes the list of variables and named common blocks private to

a thread but global within the thread. Common block names

must appear between slashes. To make a common block

THREADPRIVATE, this directive must appear after every

COMMONdeclaration of that block.

Data Scoping Clauses

Several directives noted above accept clauses to control the scope attributes of variables

enclosed by the directive. If no data scope clause is specified for a directive, the default

scope for variables affected by the directive is SHARED. list is a comma-separated list of

named variables or common blocks that are accessible in the scoping unit. Common block

names must appear within slashes (for example, /ABLOCK/)

PRIVATE Clause PRIVATE(list)

Declares the variables in the comma separated list to be private

to each thread in a team.

TABLE E-5 Summary of OpenMP Directives in Fortran 95 (Continued)
184 Fortran User’s Guide • July 2001

SHAREDClause SHARED(list)

All the threads in the team share the variables that appear in

list, and access the same storage area.

DEFAULTClause DEFAULT(PRIVATE | SHARED | NONE)

Specify scoping attribute for all variables within a parallel

region. THREADPRIVATEvariables are not affected by this

clause. If not specified, DEFAULT(SHARED)is assumed.

FIRSTPRIVATE Clause FIRSTPRIVATE(list)

Variables on list are PRIVATE. In addition, private copies of the

variables are initialized from the original object existing before

the construct.

LASTPRIVATE Clause LASTPRIVATE(list)

Variables on the list are PRIVATE. In addition, when the

LASTPRIVATEclause appears on a DO directive, the thread that

executes the sequentially last iteration updates the version of

the variable before the construct. On a SECTIONSdirective, the

thread that executes the lexically last SECTIONupdates the

version of the object it had before the construct.

REDUCTIONClause REDUCTION([operator|intrinsic]: list)

operator is one of: + * - .AND. .OR. .EQV. .NEQV.
intrinsic is one of: MAX MIN IAND IOR IEOR
Variables in list must be named variables of intrinsic type.

The REDUCTIONclause is intended to be used on a region in

which the reduction variable is used only in reduction

statements of the form shown previously for the ATOMIC
directive. Variables on list must be SHAREDin the enclosing

context. A private copy of each variable is created for each

thread as if it were PRIVATE. At the end of the reduction, the

shared variable is updated by combining the original value with

the final value of each of the private copies.

COPYINClause COPYIN(list)

The COPYINclause applies only to variables, common blocks,

and variables in common blocks that are declared as

THREADPRIVATE. In a parallel region, COPYINspecifies that the

data in the master thread of the team be copied to the thread

private copies of the common block at the beginning of the

parallel region.

TABLE E-5 Summary of OpenMP Directives in Fortran 95 (Continued)
Appendix E Fortran Directives Summary 185

COPYPRIVATEClause COPYPRIVATE(list)

Uses a private variable to broadcast a value, or a pointer to a

shared object, from one member of a team to the other

members. Variables in list must not appear in a PRIVATE or

FIRSTPRIVATE clause of the SINGLE construct specifying

COPYPRIVATE..

Scheduling Clauses on DOand PARALLEL DODirectives

SCHEDULEClause SCHEDULE(type [,chunk])

Specifies how iterations of the DO loop are divided among the

threads of the team. type can be one of the following. In the

absence of a SCHEDULEclause, STATIC scheduling is used.

STATIC Scheduling SCHEDULE(STATIC, chunk)

Iterations are divided into pieces of a size specified by chunk.

The pieces are statically assigned to threads in the team in a

round-robin fashion in the order of the thread number. chunk
must be a scalar integer expression.

DYNAMICScheduling SCHEDULE(DYNAMIC,chunk)

Iterations are broken into pieces of a size specified by chunk. As

each thread finishes a piece of the iteration space, it

dynamically obtains the next set of iterations.

GUIDEDScheduling SCHEDULE(GUIDED,chunk)

With GUIDED, the chunk size is reduced in an exponentially

decreasing manner with each dispatched piece of the iterations.

chunk specifies the minimum number of iterations to dispatch

each time. (Default chunk size is 1. The size of the initial piece

of the iterations is the number of iterations in the loop divided

by the number of threads executing the loop.)

RUNTIMEScheduling SCHEDULE(RUNTIME)

Scheduling is deferred until runtime. Schedule type and chunk
size will be determined from the setting of the OMP_SCHEDULE
environment variable. (Default is STATIC.)

TABLE E-5 Summary of OpenMP Directives in Fortran 95 (Continued)
186 Fortran User’s Guide • July 2001

OpenMP Library Routines

OpenMP Fortran API library routines are external procedures. In the following

summary, int_expr is a default scalar integer expression, and logical_expr is a default

scalar logical expression.

OMP_functions returning INTEGER(4) and LOGICAL(4) are not intrinsic and must

be declared properly, otherwise the compiler will assume REAL. Interface

declarations for the OpenMP Fortran runtime library routines summarized below

are provided by the Fortran include file omp_lib.h and a Fortran 95 MODULE
omp_lib , as described in the Fortran OpenMP 2.0 specifications. Supply an

INCLUDE 'omp_lib.h' statement or #include "omp_lib.h" preprocessor

directive, or a USE omp_lib statement in every program unit that references these

library routines.

Compiling with -Xlist will report any type mismatches.

TABLE E-6 Summary of Fortran 95 OpenMP Library Routines

Execution Environment Routines

OMP_SET_NUM_THREADSSubroutine

SUBROUTINE OMP_SET_NUM_THREADS(int_expr)

Sets the number of threads to use for the next parallel region.

OMP_GET_NUM_THREADSFunction

INTEGER(4) FUNCTION OMP_GET_NUM_THREADS()
Returns the number of threads currently in the team executing the

parallel region from which it is called.

OMP_GET_MAX_THREADSFunction

INTEGER(4) FUNCTION OMP_GET_MAX_THREADS()
Returns the maximum value that can be returned by calls to the

OMP_GET_NUM_THREADS function.

OMP_GET_THREAD_NUMFunction

INTEGER(4) FUNCTION OMP_GET_THREAD_NUM()
Returns the thread number within the team. This is a number

between 0 and OMP_GET_NUM_THREADS()-1.The master thread is

thread 0.

OMP_GET_NUM_PROCSFunction

INTEGER(4) FUNCTION OMP_GET_NUM_PROCS()
Returns the number of processors that are available to the program.
Appendix E Fortran Directives Summary 187

OMP_IN_PARALLELFunction

LOGICAL(4) FUNCTION OMP_IN_PARALLEL()
Returns .TRUE. if called from within the dynamic extent of a region

executing in parallel, and .FALSE. otherwise.

OMP_SET_DYNAMICSubroutine

SUBROUTINE OMP_SET_DYNAMIC(logical_expr)

Enables or disables dynamic adjustment of the number of threads

available for parallel execution of programs. (Dynamic adjustment

is enabled by default).

OMP_GET_DYNAMICFunction

LOGICAL(4) FUNCTION OMP_GET_DYNAMIC()

Returns .TRUE. if dynamic thread adjustment is enabled and returns

.FALSE. otherwise.

OMP_SET_NESTEDSubroutine

SUBROUTINE OMP_SET_NESTED(logical_expr)

Enables or disables nested parallelism. (Nested parallelism is

disabled by default.) Nested parallelism is not supported.

OMP_GET_NESTEDFunction

LOGICAL(4) FUNCTION OMP_GET_NESTED()
Returns .TRUE. if nested parallelism is enabled, .FALSE. otherwise.

Nested parallelism is not supported; this function will always return
.FALSE.

Lock Routines
Two types of locks are supported: simple locks and nestable locks. Nestable locks

may be locked multiple times by the same thread before being unlocked; simple

locks may not be locked if they are already in a locked state. Simple lock variables

may only be passed to simple lock routines, and nested lock variables only to nested

lock routines.

The lock variable var must be accessed only through these routines. Use the

parameters OMP_LOCK_KINDand OMP_NEST_LOCK_KIND(defined in omp_lib.h
INCLUDE file and the omp_lib MODULE) for this purpose. For example,

INTEGER(KIND=OMP_LOCK_KIND) :: var
INTEGER(KIND=OMP_NEST_LOCK_KIND) :: nvar

TABLE E-6 Summary of Fortran 95 OpenMP Library Routines (Continued)
188 Fortran User’s Guide • July 2001

OMP_INIT_LOCKSubroutine

SUBROUTINE OMP_INIT_LOCK(var)
SUBROUTINE OMP_INIT_NEST_LOCK(nvar)

Initializes a lock associated with lock variable var for use in

subsequent calls. The initial state is unlocked.

OMP_DESTROY_LOCKSubroutine

SUBROUTINE OMP_DESTROY_LOCK(var)
SUBROUTINE OMP_DESTROY_NEST_LOCK(nvar)

Disassociates the given lock variable var from any locks.

OMP_SET_LOCKSubroutine

SUBROUTINE OMP_SET_LOCK(var)
SUBROUTINE OMP_SET_NEST_LOCK(nvar)
Forces the executing thread to wait until the specified lock is

available. The thread is granted ownership of the lock when it is

available.

OMP_UNSET_LOCKSubroutine

SUBROUTINE OMP_UNSET_LOCK(var)
SUBROUTINE OMP_UNSET_NEST_LOCK(nvar)
Releases the executing thread from ownership of the lock. Behavior

is undefined if the thread does not own that lock.

OMP_TEST_LOCKFunction

LOGICAL FUNCTION OMP_TEST_LOCK(var)
INTEGER FUNCTION OMP_TEST_NEST_LOCK(nvar)
Attempts to set the lock associated with lock variable. Returns

.TRUE. if the simple lock was set successfully, .FALSE. otherwise.

OMP_TEST_NEST_LOCKreturns the new nesting count if the lock

associated with nvar was set successfully, otherwise it returns 0.

Timing Routines
These two functions, returning double precision (REAL(8)) , support a portable wall-

clock timer.

OMP_GET_WTIMEFunction

REAL(8) FUNCTION OMP_GET_WTIME()
Returns a double precision value equal to the elapsed wallclock

time in seconds since “some arbitrary time in the past”

OMP_GET_WTICKFunction

REAL(8) FUNCTION OMP_GET_WTICK()
Returns a double precision value equal to the number of seconds

between successive clock ticks.

TABLE E-6 Summary of Fortran 95 OpenMP Library Routines (Continued)
Appendix E Fortran Directives Summary 189

OpenMP Environment Variables

TABLE E-7 and TABLE E-8 summarize the OpenMP Fortran API environment

variables that control the execution of OpenMP programs.

TABLE E-7 Summary of OpenMP Fortran Environment Variables

OMP_SCHEDULE
Sets schedule type for DOand PARALLEL DOdirectives specified with schedule type

RUNTIME. If not defined, a default value of STATIC is used. Value is “type[,chunk]”
Example: setenv OMP_SCHEDULE “GUIDED,4” .

OMP_NUM_THREADS
Sets the number of threads to use during execution, unless set by a NUM_THREADSclause, or

a call to OMP_SET_NUM_THREADS() subroutine.

If not set, a default of 1 is used. Value is a positive integer. (Current maximum is 128).

Example: setenv OMP_NUM_THREADS 16

OMP_DYNAMIC
Enables or disables dynamic adjustment of the number of threads available for execution of

parallel regions. If not set, a default value of TRUEis used. Value is TRUEor FALSE.

Example: setenv OMP_DYNAMIC FALSE

OMP_NESTED
Enables or disables nested parallelism. (Nested parallelism is not supported.)

Value is TRUEor FALSE. The default, if not set, is FALSE.

Example: setenv OMP_NESTED TRUE
190 Fortran User’s Guide • July 2001

TABLE E-8 Environment variables not part of the OpenMP Fortran API

SUNW_MP_WARN
Controls warning messages issued by the runtime library. If set TRUE, the runtime library

issues warning messages to stderr ; FALSE disables warning messages. The default is

FALSE. Example: setenv SUNW_MP_WARN TRUE

SUNW_MP_THR_IDLE
Controls the end-of-task status of each thread executing the parallel part of a program. You

can set the value to spin , sleep ns , or sleep nms. The default is SPIN — a thread should

spin (or busy-wait) after completing a parallel task, until a new parallel task arrives.

Choosing SLEEPtime specifies the amount of time a thread should spin-wait after

completing a parallel task. If, while a thread is spinning, a new task arrives for the thread,

the tread executes the new task immediately. Otherwise, the thread goes to sleep and is

awakened when a new task arrives. time may be specified in seconds, (ns) , or just (n) , or

milliseconds, (nms) .

SLEEPwith no argument puts the thread to sleep immediately after completing a parallel

task. SLEEP, SLEEP (0) , SLEEP (0s) , and SLEEP (0ms) are all equivalent.

Example: setenv SUNW_MP_THR_IDLE (50ms)

STACKSIZE
Sets the thread stack size. The value is in kilobytes.

Example: setenv STACKSIZE 8192 sets the thread stack size to 8Mb.
Appendix E Fortran Directives Summary 191

192 Fortran User’s Guide • July 2001

Index
SYMBOLS
!DIR$ in directives, 160

#ifdef , 21

#include , 21

∆, blank character, 2

A
abrupt_underflow , 61

align

-dalign , 52

data in COMMON with -aligncommon , 46

structures as in VMS Fortran, 109

See also data

analyzer compile option, -xF , 104

application registers (SPARC), 118

arithmetic See floating-point, 61

array bounds checking, 49

asa , Fortran print utility, 11

assembly code, 87

automatic variables, 88

auto-read, dbx , disable, 119

B
backslash in character constants, 92, 109

backward compatibility, options, 44

basic block, profile by, -a , 46

binding

dynamic, 55

Boolean

constant, alternate forms, 150

type, constants, 149

browser, 87

C
C(..) directive, 26

cache

padding for, 80

specify hardware cache, 99

CALL
in a loop, parallelize, 88

inlining subprogram calls with -inline , 69

preserving arguments over ENTRY

statements, 47

case, preserve upper and lower case, 90

CDIR$ in directives, 160

CIF, compiler information file, 52

code size, 120

command-line

help, 15

unrecognized options, 23

comments

as directives, 160

COMMON
alignment, 46

consistency checking with

-xcommoncheck , 102
Index 193

padding, 80

compatibility

between compiler releases, 145

Fortran 95 vs. Fortran 77, 163

with C, 167

compile and link, 20, 22

and -B , 49

build a dynamic shared library, 66

compile only, 50

dynamic (shared) libraries, 55

compiler

command line, 19

driver, show commands with -dryrun , 54, 55

frequently used options, 39

show version, 91

timing, 90

verbose messages, 92

compilers, accessing, 4

constant arguments, -copyargs , 50

continuation lines, 55, 147

conventions

file name suffixes, 20

copy restore, 47

cpp , C preprocessor, 21, 51, 58

Cray

pointer, 153

pointer and Fortran 95 pointer, 154

cross reference table, -Xlist , 94

D
data

alignment with -dbl_align_all , 54

alignment with -f , 58

alignment with -xmemalign , 111

allow misaligned data, -misalign , 73

COMMON, alignment with -aligncommon , 46

default sizes and -dbl , 53

default sizes and -r8 , 85

interpret REAL as DOUBLE PRECISION, 85

mappings with -xtypemap , 121

promote constants to REAL*8, 86

data dependency

-depend , 54

dbx
compile with -g option, 66

faster initialization, 119

debugging

check array subscripts with -C , 49

cross-reference table, 93

-g option, 66

global program checking with -Xlist , 93

show compiler commands with -dryrun , 54, 55

utilities, 11

VMS ’D’ debugging statements, 92

with optimization, 66

without object files, 119

-Xlist , 11

default

include file paths, 68

define symbol for cpp , -D name, 51

differences

Sun WorkShop Fortran 95, 147

directives

Fortran 77, 24

loop unrolling, 27

OpenMP (Fortran 95), 30, 180

optimization level, 28

parallelization, 29

parallelization (f95), 162

parallelization, Cray, Sun, or OpenMP, 73

summary of all directives, 175

weak linking, 27

directory

temporary files, 90

DOALL directive, 30

documentation index, 5

documentation, accessing, 5

DOSERIAL directive, 30

dynamic

library

build, -G , 66

name a dynamic library, 67

E
environment

program terminations by STOP, 89

environment variables

usage, 32

error messages

f90, 130
194 Fortran User’s Guide • July 2001

I/O, 126

message tags, 56

suppress with -erroff , 56

with error , 11

error , error message display, 11

exceptions, floating-point, 64

trapping, 65

executable file

built-in path to dynamic libraries, 84

name, 78

strip symbol table from, 87

explicit

typing, 91

explicit parallelization directives, 29

extensions

non-ANSI, -ansi flag, 47

VAX VMS Fortran features with -xl , 109

extensions and features, 10

external

C functions, 26

external names, 57

F
f77 , f90 command line, 19, 37

features

Fortran 95, 147

release history, 137

features and extensions, 10

FFLAGS environment variable, 33

file

.M , See module files
executable, 20

object, 20

size too big, 33

file names

recognized by the compiler, 20

recognized by the compiler (f95), 148

FIXED directive, 161

fixed-format source, 61

flags See options

floating-point

fpversion , displays hardware platform, 32

interval arithmetic, 107

non-standard, 62

preferences, -fsimple , 64

rounding, 63

trapping mode, 65

See also the Numerical Computation Guide
Fortran

features and extensions, 10

mixing f77 and f90 compilations, 23

preprocessor, 51

invoking with -F , 58

utilities, 11

Fortran 95

case, 149

directives, 160

features, 147

I/O extensions, 158

incompatibilities with Fortran 77, 163

linking with Fortran 77, 165

modules, 167

fpp , Fortran preprocessor, 21, 51, 58, 63

fpversion , show floating-point platform

information, 32

FREE directive, 161

free format, 2

free-format source, 63

fsplit , Fortran utility, 11

function

external C, 26

function-level reordering, 104

G
global offset table, 82

global program checking, -Xlist , 93

global symbols

weak, 27

gprof
-pg , profile by procedure, 82

H
hardware architecture, 95, 100, 120

help

command-line, 15

README information, 105

hexadecimal, 150
Index 195

Hollerith, 151

I
impatient user’s guide, 17

INCLUDE files, 67

information files, 14

inline, 60

templates, -libmil , 71

inlining

automatic with -O4 , 78

with -inline , 69

input/output

compatibility, f77/f95, 164

error messages, 126

installation, 14

installation path, 68

integer, size four and eight bytes, 69

interval arithmetic

-xia option, 106

-xinterval option, 107

intrinsic procedures, extensions, 162

invalid, floating-point, 65

ISA, instruction set architecture, 95

L
large files, 33

legacy compiler options, 44

libm
searched by default, 70

library

build, -G , 66

disable system libraries, 75

dynamic search path in executable, 84

linking with -l , 71

multithread-save, 74

name a shared library, 67

path to shared library in executable, 76

position-independent and pure, 123

Sun Performance Library, 12, 110

vectorized math library, libmvec , 122

license information, 110

limit
command, 35

stack size, 89

limits

Fortran 95 compiler, 149

linear algebra routines, 110

linking

and parallelization with -parallel , 82

consistent compile and link, 22

consistent with compilation, 22

disable incremental linker, 106

disable system libraries, 75

enable dynamic linking, shared libraries, 55

explicit parallelization with -explicitpar , 57

linker -Mmapfile option, 104

mixed Fortran 77 and Fortran 90

compilations, 23

separate from compilation, 22

specifying libraries with -l , 71

weak names, 27

with automatic parallelization, -autopar , 48

with compilation, 20

list of directives, 175

list of options, 67

local variables

allocate on memory stack, 88

loop

automatic parallelization, 48

dependence analysis, -depend , 54

executed once, -onetrip , 79

explicit parallelization, 56

parallelization messages, 72

parallelizing a CALL in a loop, 88

unrolling with -unroll , 91

loop unrolling

directive, 27

M
man pages, 12

man pages, accessing, 3

MANPATHenvironment variable, setting, 5

math library

and -L dir option, 70

optimized version, 110

memory

actual real memory, display, 34

limit virtual memory, 35
196 Fortran User’s Guide • July 2001

optimizer out of memory, 33

messages

I/O error, 126

parallelization, 72, 93

runtime, 125

signal handler, 126

suppress with -silent , 88

verbose, 92

misaligned data, specifying behavior, 111

.mod file, module file, 167

modules

creating and using, 24

.mod file, 167

search path, 72

multithreading

See parallelization

multithread-safe libraries, 74

N
name

argument, do not append underscore, 26

object, executable file, 78

nonstandard_arithmetic() , 61

O
object files

compile only, 50

name, 78

object library search directories, 70

obsolescent options, 45

octal, 150

one-trip DO loops, 79

OpenMP, 30, 73

directives summary, 180

environment variables, summarized, 190

library routines, summarized, 187

OPT directive, 28

-xmaxopt option, 111

optimization

across source files, 103, 107

floating-point, 64

inline user-written routines, 69

interprocedural, 107

levels, 77

loop unrolling, 91

loop unrolling by directive, 27

math library, 110

OPT directive, 28, 111

PIPELOOP directive, 28

prefetch, 114

PREFETCH directive, 29

specify cache, 99

specify instruction set architecture, 95

specify processor, 100

target hardware, 74, 120

vector library transformations with -
xvector , 122

with debugging, 66

with -fast , 59

options

commonly used, 43

grouped by function, 39

legacy, 44

obsolete, 45

order of processing, 39

pass option to compilation phase, 84

show list of, -help , 67

silent, 45

syntax on command line, 38

unrecognized, 23

Reference to all option flags, 45 to 124

-a , 46

-aligncommon , 46

-ansi extensions, 47

-arg=local , preserve ENTRY arguments, 47

-autopar , parallelize automatically, 48

-Bdynamic , 48

-Bstatic , 48

-C , check subscripts, 49

-c , compile only, 50

-cg89 , (obsolete), 50

-cg92 , (obsolete), 50

-copyargs , allow stores to literal

arguments, 50

-dalign
with -fast , 60

-dalign , 52

-db , 52

-dbl
and -xtypemap , 53, 85

double default data sizes, 53

-dbl_align_all , force data alignment, 54
Index 197

-depend
data dependency analysis, 54

with -fast , 60

-dn , 55

-D name, define symbol, 51

-dryrun , 55

-dy , 55

-e , extended source lines, 55

-erroff , suppress warnings, 56

-errtags , display message tag with

warnings, 56

-explicitpar , parallelize explicitly, 56

-ext_names , externals without underscore, 57

-F , 58

-f , align on 8-byte boundaries, 58

-fast , 59

-fixed , 61

-flags , 61

-fnonstd , 61

-fns
with -fast , 60

-fns , 62

-fpp , Fortran preprocessor, 63

-free , 63

-fround= r, 63

-fsimple
simple floating-point model, 64

with -fast , 60

-ftrap
with -fast , 60

-ftrap , 65

-G , 66

-g , 66

-help , 67

-h name, 67

-i2 , short integers, 68

-i4 , 69

-I dir, 67

-inline , 69

-KPIC , 70

-Kpic , 70

-L dir, 70

-libmil
with -fast , 60

-libmil , 71

-l library, 71

-loopinfo , show parallelization, 72

-Mdir, f95 modules, 72, 167

-misalign , 73

-mp=cray , Cray MP directives, 73

-mp=openmp , OpenMP directives, 73

-mp=sun , Sun MP directives, 73

–mt , multithread safe libraries, 74

-native
with -fast , 60

-native , 74

-noautopar , 75

-nodepend , 75

-noexplicitpar , 75

-nolib , 75

-nolibmil , 76

-noqueue , 76

-noreduction , 76

-norunpath , 76

-o , output file, 78

-oldldo , 79

-On
with -fast , 60

with -g , 77

-On, 77

-onetrip , 79

-openmp , 79

-p , profile by procedure, 80

-pad= p, 80

-parallel , parallelize loops, 81

-pg , profile by procedure, 82

-PIC , 83

-pic , 82

-Qoption , 84

-R list , 84

-r8 , 85

-r8const , 86

-reduction , 86

-s , 87

-sbfast , 87

–silent , 88

-stop_status , 89

-temp , 90

-time , 90

-u , 91

-U , do not convert to lowercase, 90

-U name, undefine preprocessor macro, 91

-unroll , unroll loops, 91

-V , 91

-v , 92

-vax= v, 92, 109

-vpara , 93

-w , 93
198 Fortran User’s Guide • July 2001

-xa , 95

-xarch= isa, 95

-xautopar , 99

-xcache= c, 99

-xcg[89|92] , 100

-xchip= c, 100

-xcode= c, 102

-xcommoncheck , 102

-xcrossfile , 103

-xdepend , 104

-xexplicitpar , 104

-xF , 104

-xhasc , Hollerith as character, 105

-xhelp= h, 105

-xia , interval arithmetic, 106

-xildoff , 106

-xinline , 106

-xinterval= v for interval arithmetic, 107

-xipo , interprocedural optimizations, 107

-xlibmil , 110

-xlibmopt
with -fast , 60

-xlibmopt , 110

-xlic_lib=sunperf , 110

-xlicinfo , 110

-Xlist
suboptions, 94

-Xlist , global program checking, 93

-xloopinfo , 111

-xmaxopt , 111

-xmemalign , 111

-xnolib , 112

-xnolibmopt , 112

-xO n, 113

-xparallel , 113

-xpg , 113

-xpp= p, 113

-xprefetch
PREFETCH directive, 29

-xprefetch , 114

-xprofile= p, 116

-xrecursive , 118

-xreduction , 118

-xregs= r, 118

-xs , 119

-xsafe=mem , 119

-xsb , 120

-xsbfast , 120

-xspace , 120

-xtarget= t
table, 169

-xtarget= t, 120

-xtime , 121

-xtypemap
and -dbl , 53, 85

-xtypemap , 121

-xunroll , 122

-xvector , 122

-xvpara , 123

-Zlp , loop profiler, (obsolete), 123

-ztext , 123

OPTIONS environment variable, 32

order of

functions, 104

order of processing, options, 39

overflow, 65

stack, 89

P
padding, 80

parallelization

and -stackvar , 88

automatic, 48

automatic and explicit, -parallel , 81

directives (f77), 29

explicit, 57

loop information, 72

messages, 93

OpenMP, 30, 79

OpenMP directives summarized, 180

reduction operations, 86

select directives style, 73

with multithreaded libraries, 74

See also Fortran Programming Guide
passes of the compiler, 92

path

#include , 67

dynamic libraries in executable, 84

library search, 70

modules search, 72

to standard include files, 68

PATH environment variable, setting, 3

performance

optimization, 59

Sun Performance Library, 12
Index 199

performance library, 110

PIPELOOP directive, 28

pointee, 153

pointer, 153

position-independent code, 82, 83, 102

pragma, See directives

PREFETCH directive, 29, 114

preprocessor, source file

define symbol, 51

force fpp , 63

fpp, cpp , 21

specify with -xpp= p, 113

undefine symbol, 91

preserve case, 90

print

asa , 11

processor

specify target processor, 100

processor, specify target, 120

prof , -p , 80

profile by

basic block, 46

procedure, -pg , gprof , 82

profiling, -xprofile , 116

Q
quick start, 17

R
range of subscripts, 49

README file, 14, 105

RECURSIVE attribute, 118

register usage, 118

release history, 137

reorder functions, 104

rounding, 63, 64

S
-S , 87

-sb , SourceBrowser, 87

search

modules, 72

object library directories, 70

set

#include path, 67

shared libraries

global offset table, 82

shared library

build, -G , 66

disallow linking, -dn , 55

name a shared library, 67

position-independent code, 82

pure, no relocations, 123

shell

limits, 34

shell prompts, 3

SIGFPE, floating-point exception, 61

signal handler, 126

silent options, 45

size of compiled code, 120

Solaris versions supported, 3

source file

preprocessing, 21

source format

mixing format of source lines (f95), 148

options (f95), 148

source lines

extended, 55

fixed-format, 61

free-format, 63

line length, 147

preprocessor, 113

preserve case, 90

SourceBrowser, 87

SPARC platform

cache, 99

chip, 100

code address space, 102

instruction set architecture, 97

register usage, -xregs , 118

specify target platform, -xtarget , 120

-xtarget expansions, 169

stack

increase stack size, 89

overflow, 89

-stackvar , 88
200 Fortran User’s Guide • July 2001

standard

include files, 68

standards

conformance, 9

identify non-ANSI extensions, -ansi flag, 47

statement

profile by, -a and tcov , 46

static

binding, 55

STOP statement, return status, 89

strict (interval arithmetic), 107

strip executable of symbol table, -s , 87

suffix

of file names recognized by compiler, 20

of file names recognized by compiler (f95), 148

suppress

blank in listed-directed output, 79

implicit typing, 91

license queue, 76

linking, 50

warnings, 93

warnings by tag name, -erroff , 56

swap command, 34

swap space

display actual swap space, 34

increasing, 34

limit amount of disk swap space, 33

symbol table

for dbx , 66, 119

syntax

compiler command line, 37

f77 , f90 commands, 37

f77, f90 commands, 19

options on compiler command line, 38

system.inc, 31

T
.T file, 52

tab format, 2

tcov
-a , profile by statement, 46

new style with -xprofile , 117

templates inline, 71

temporary files, directory for, 90

trapping

floating-point exceptions, 65

on memory, 119

type declaration alternate form, 152

typographic conventions, 2

U
ulimit command, 34

underflow, 65

gradual, 62

underscore, 57

do not append to external names, 26

unrecognized options, 23

UNROLL directive, 27

usage

compiler, 19

utilities, 11

V
variables

undeclared, 91

VAX VMS Fortran

features with -vax , 92

features with -xl , 109

version

id of each compiler pass, 91

W
warnings

message tags, 56

suppress messages, 93

suppress with -erroff , 56

undeclared variables, 91

use of non-standard extensions, 47

WEAK directive, 27

weak linker symbols, 27

widestneed (interval arithmetic), 107
Index 201

202 Fortran User’s Guide • July 2001

	Before You Begin
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun WorkShop Development Tools and Man Pages
	Accessing Sun WorkShop Documentation
	Accessing Related Documentation
	Ordering Sun Documentation
	Sending Your Comments

	Introduction
	Standards Conformance
	Features of the Fortran Compilers
	Other Fortran Utilities
	Debugging Utilities
	Sun Performance Library™
	Interval Arithmetic
	Man Pages
	READMEs
	Command-Line Help

	Using Sun Fortran Compilers
	A Quick Start
	Invoking the Compiler
	Compile-Link Sequence
	Command-Line File Name Conventions
	Source Files
	Source File Preprocessors
	Separate Compiling and Linking
	Consistent Compiling and Linking
	Linking Mixed Fortran 95 and Fortran 77 Compilations
	Unrecognized Command-Line Arguments
	Modules (Fortran 95)

	Directives
	General Directives
	Parallelization Directives
	OpenMP Directives

	f95: Library Interfaces and system.inc
	Compiler Usage Tips
	Determining Hardware Platform
	Memory Size

	Fortran Compiler Options
	Command Syntax
	Options Syntax
	Options Summary
	Commonly Used Options
	Backward Compatibility and Legacy Options
	Obsolescent Options

	Options Reference
	–a
	-aligncommon[=n]
	–ansi
	–arg=local
	–autopar
	–B{static|dynamic}
	–C
	–c
	–cg89
	–cg92
	–copyargs
	–Dname[=def]
	–dalign
	-db
	–dbl
	–dbl_align_all={yes|no}
	–depend
	-dn
	–dryrun
	–d{y|n}
	–e
	–erroff=taglist
	–errtags[={yes|no}]
	–explicitpar
	–ext_names=e
	–F
	–f
	–fast
	–fixed
	–flags
	–fnonstd
	–fns[={no|yes}]
	–fpover[={yes|no}]
	-fpp
	–free
	–fround=r
	–fsimple[=n]
	–ftrap=t
	–G
	–g
	–hname
	–help
	–Idir
	–i2
	–i4
	–inline=[%auto][[,][no%]f1,...[no%]fn]
	–Kpic
	–KPIC
	–Ldir
	–lx
	–libmil
	–loopinfo
	–Mdir
	–misalign
	–mp={%none|sun|cray|openmp}
	–mt
	–native
	–noautopar
	–nodepend
	–noexplicitpar
	–nolib
	–nolibmil
	–noqueue
	–noreduction
	–norunpath
	–O[n]
	–O
	–O1
	–O2
	–O3
	–O4
	–O5
	–o name
	–oldldo
	–onetrip
	-openmp
	–p
	–pad[=p]
	–parallel
	–pg
	–pic
	–PIC
	–Qoption pr ls
	–qp
	–R ls
	–r8
	-r8const
	–reduction
	–S
	–s
	–sb
	–sbfast
	–silent
	–stackvar
	–stop_status=yn
	–temp=dir
	–time
	–U
	-Uname
	–u
	–unroll=n
	–V
	–v
	–vax=v
	–vpara
	–w
	–Xlist[x]
	–xa
	–xarch=isa
	–xautopar
	–xcache=c
	–xcg89
	–xcg92
	–xchip=c
	–xcode=code
	–xcommonchk[={no|yes}]
	–xcrossfile [=n]
	–xdepend
	–xexplicitpar
	–xF
	-xhasc[={yes|no}]
	–xhelp=h
	-xia[=v]
	–xild{off|on}
	–xinline=list
	-xinterval[=v]
	-xipo[={0|1}]
	–xl[d]
	-xlang=pl
	–xlibmil
	–xlibmopt
	–xlic_lib=sunperf
	–xlicinfo
	–xloopinfo
	–xmaxopt[=n]
	-xmemalign[=<a>]
	–xnolib
	–xnolibmil
	–xnolibmopt
	–xOn
	-xopenmp
	–xpad
	–xparallel
	–xpg
	–xpp={fpp|cpp}
	–xprefetch[=a[,a]]
	–xprofile=p
	-xrecursive
	–xreduction
	–xregs=r
	–xs
	–xsafe=mem
	–xsb
	–xsbfast
	–xspace
	–xtarget=t
	–xtime
	–xtypemap=spec
	–xunroll=n
	–xvector[={yes|no}]
	–xvpara
	–Zlp
	–ztext

	Runtime Error Messages
	Operating System Error Messages
	Signal Handler Error Messages (f77)
	I/O Error Messages (f77)
	I/O Error Messages (f95)

	Features Release History
	Fortran 95 New Features and Changes
	f95 New Features in Sun WorkShop 6 update 2:
	f95 New Features in Sun WorkShop 6 update 1:
	f95 New Features in Sun WorkShop 6:
	New Features Released In f90 2.0:

	Fortran 77 New Features and Changes
	f77 New Features in Sun WorkShop 6 update 2:
	f77 New Features in Sun WorkShop 6 update 1:
	f77 New Features in Sun WorkShop 6:
	Features in f77 5.0:
	Features in f77 4.2:

	FORTRAN 77 Upward Compatibility
	Fortran 3.0/3.0.1 to 4.0
	BCP: Running Applications from Solaris 1

	Fortran 95 Features and Differences
	Features and Extensions
	Continuation Line Limits
	Fixed-Form Source Lines
	Directives
	Source Form Assumed
	Known Limits
	Boolean Type
	Abbreviated Size Notation for Numeric Data Types
	Cray Pointers
	Other Language Extensions
	I/O Extensions

	Directives
	Form of Special f95 Directive Lines
	FIXED and FREE Directives
	Parallelization Directives

	Intrinsics
	Compatibility with FORTRAN 77
	Incompatibility Issues Between f95 and f77
	I/O Compatibility
	Linking with f77-Compiled Routines
	Intrinsics

	Forward Compatibility
	Mixing Languages
	Module Files

	–xtarget Platform Expansions
	Fortran Directives Summary
	General Fortran Directives
	Special Fortran 95 Directives
	Sun Parallelization Directives
	Cray Parallelization Directives
	Fortran 95 OpenMP Directives
	OpenMP Library Routines
	OpenMP Environment Variables

	Index

