
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

C++ Migration Guide

Forte Developer 6 update 2
(Sun WorkShop 6 update 2)

Part No. 806-7990-10
July 2001, Revision A

Please
Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,

or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Cray Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Cray Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

Contents

Before You Begin xiii

How This Book Is Organized xiii

Typographic Conventions xiv

Shell Prompts xv

Supported Platforms xv

Accessing Sun WorkShop Development Tools and Man Pages xv

Accessing Sun WorkShop Compilers and Tools xvi

Accessing Sun WorkShop Man Pages xvi

Accessing Sun WorkShop Documentation xvii

Accessing Related Documentation xviii

Ordering Sun Documentation xviii

Commercially Available Books xix

Sending Your Comments xix

1. Introduction 1-1

1.1 The C++ Language 1-1

1.2 Compiler Modes of Operation 1-2

1.2.1 Standard Mode 1-2

1.2.2 Compatibility Mode 1-3
Contents v

1.3 Binary Compatibility Issues 1-4

1.3.1 Language Changes 1-4

1.3.2 Mixing Old and New Binaries 1-5

1.4 Conditional Expressions 1-6

1.5 Function Pointers and void* 1-7

1.6 Anticipating Future Mangling Changes 1-8

2. Using Compatibility Mode 2-1

2.1 Compatibility Mode 2-1

2.2 Keywords in Compatibility Mode 2-2

2.3 Language Semantics 2-2

2.3.1 Copy Constructor 2-3

2.3.2 Static Storage Class 2-3

2.3.3 Operators new and delete 2-3

2.3.4 new const 2-4

2.3.5 Conditional Expression 2-4

2.3.6 Default Parameter Value 2-4

2.3.7 Trailing Commas 2-5

2.3.8 Passing of const and Literal Values 2-5

2.3.9 Conversion Between Pointer-to-Function and void* 2-5

2.3.10 Type enum 2-6

2.3.11 Member-Initializer List 2-6

2.3.12 const and volatile Qualifiers 2-6

2.3.13 Nested Type 2-7

2.3.14 Class Template Definitions and Declarations 2-7

2.4 Template Compilation Model 2-7

3. Using Standard Mode 3-1

3.1 Standard Mode 3-1

3.2 Keywords in Standard Mode 3-1
vi C++ Migration Guide • July 2001

3.3 Templates 3-3

3.3.1 Resolving Type Names 3-3

3.3.2 Converting to the New Rules 3-4

3.3.3 Explicit Instantiation and Specialization 3-4

3.3.4 Class Template Definitions and Declarations 3-6

3.3.5 Template Repository 3-6

3.3.6 Templates and the Standard Library 3-7

3.4 Class Name Injection 3-7

3.5 for -Statement Variables 3-9

3.6 Conversion Between Pointer-to-Function and void* 3-10

3.7 String Literals and char* 3-10

3.8 Conditional Expressions 3-12

3.9 New Forms of new and delete 3-13

3.9.1 Array Forms of new and delete 3-13

3.9.2 Exception Specifications 3-14

3.9.3 Replacement Functions 3-16

3.9.4 Header Inclusions 3-17

3.10 Boolean Type 3-17

3.11 Pointers to extern "C" Functions 3-18

3.11.1 Language Linkage 3-18

3.11.2 A Less-Portable Solution 3-20

3.11.3 Pointers to Functions as Function Parameters 3-21

3.12 Runtime Type Identification (RTTI) 3-22

3.13 Standard Exceptions 3-23

3.14 Order of the Destruction of Static Objects 3-23

4. Using Iostreams and Library Headers 4-1

4.1 Iostreams 4-1

4.2 Task (Coroutine) Library 4-4

4.3 Rogue Wave Tools.h++ 4-4
Contents vii

4.4 C Library Headers 4-4

4.5 Standard Header Implementation 4-8

5. Migrating From C++ 3.0 5-1

5.1 Keywords Added Since the C++ 3.0 Compiler 5-1

5.2 Source Code Incompatibilities 5-2

6. Moving From C to C++ 6-1

6.1 Reserved and Predefined Words 6-1

6.2 Creating Generic Header Files 6-3

6.3 Linking to C Functions 6-3

6.4 Inlining Functions in Both C and C++ 6-4

Index Index-1
viii C++ Migration Guide • July 2001

Tables

TABLE P-1 Typographic Conventions xiv

TABLE 2-1 Keywords in Compatibility Mode 2-2

TABLE 3-1 Keywords in Standard Mode 3-2

TABLE 3-2 Alternative Token Spellings 3-2

TABLE 3-3 Exception-Related Type Names 3-23

TABLE 5-1 Keywords Added Since C++ 3.0 Compiler 5-1

TABLE 6-1 Reserved Keywords 6-1

TABLE 6-2 C++ Reserved Words for Operators and Punctuators 6-2
ix

x C++ Migration Guide • July 2001

Code Samples

CODE EXAMPLE 3-1 Class Name Injection Problem 1 3-8

CODE EXAMPLE 3-2 Class Name Injection Problem 2 3-8

CODE EXAMPLE 3-3 Standard Header <new> 3-15

CODE EXAMPLE 4-1 Using Standard iostream Name Forms 4-2

CODE EXAMPLE 4-2 Using Classic iostream Name Forms 4-2

CODE EXAMPLE 4-3 Forward Declaration With Classic iostreams 4-3

CODE EXAMPLE 4-4 Forward Declaration With Standard iostreams 4-3

CODE EXAMPLE 4-5 Code for Both Classic and Standard iostreams 4-3
xi

xii C++ Migration Guide • July 2001

Before You Begin

This book explains what you need to know to move from 4.0, 4.0.1, 4.1, or 4.2

versions of the C++ compiler. If you are moving from still earlier 3.0 or 3.0.1 versions

of the C++ compiler, the information still applies. A few additional topics specific to

these older compiler versions are addressed. This manual is intended for

programmers with a working knowledge of C++ and some understanding of the

Solaris™ operating environment and UNIX® commands.

How This Book Is Organized

This book contains the following chapters:

Chapter 1 discusses the C++ language changes and explains how you can use

compatibility mode to continue to compile legacy code while you modify it to

conform to the C++ standard. This chapter also discusses the restrictions on mixing

binaries produced by different compiler versions and on mixing compatibility-mode

binaries with standard-mode binaries.

Chapter 2 explains how to compile code intended for versions 4.0, 4.1, and 4.2 of the

C++ compiler.

Chapter 3 explains how to update your code so that it will compile in standard

mode (the default mode).

Chapter 4 explains library and header file changes.

Chapter 5 explains how to migrate from the C++ 3.0 compiler.

Chapter 6 describes how to move programs from C to C++.
xiii

Typographic Conventions

TABLE P-1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

AaBbCc123 Command-line placeholder text;

replace with a real name or

value

To delete a file, type rm filename.

[] Square brackets contain

arguments that are optional

–compat[= n]

{ } Parentheses contain a set of

choices for a required option

–d{y|n}

| The “pipe” or “bar” symbol

separates arguments, only one

of which may be used at one

time

–d{y|n}

... The ellipsis indicates omission

in a series

–features= a[, a...]

% The percent sign indicates the

word has a special meaning

–ftrap=%all,no%division
xiv C++ Migration Guide • July 2001

Shell Prompts

Supported Platforms

This Sun WorkShop™ release supports versions 2.6, 7, and 8 of the Solaris™ SPARC™

Platform Edition and Solaris™ Intel Platform Edition operating environments.

Accessing Sun WorkShop Development

Tools and Man Pages

The Sun WorkShop product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Sun

WorkShop compilers and tools, you must have the Sun WorkShop component

directory in your PATHenvironment variable. To access the Sun WorkShop man

pages, you must have the Sun WorkShop man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 update 2 Installation Guide or your system

administrator.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
Before You Begin xv

Note – The information in this section assumes that your Sun WorkShop 6 update 2

products are installed in the /opt directory. If your product software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Sun WorkShop Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Sun WorkShop compilers and tools.

To Determine If You Need to Set Your PATHEnvironment
Variable

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

To Set Your PATHEnvironment Variable to Enable Access to
Sun WorkShop Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Sun WorkShop Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Sun WorkShop man pages.

% echo $PATH
xvi C++ Migration Guide • July 2001

To Determine If You Need to Set Your MANPATHEnvironment
Variable

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in the next

section for setting your MANPATHenvironment variable.

To Set Your MANPATHEnvironment Variable to Enable Access
to Sun WorkShop Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Sun WorkShop

Documentation

You can access Sun WorkShop product documentation at the following locations:

■ The product documentation is available from the documentation index
installed with the product on your local system or network.

Point your Netscape™ Communicator 4.0 or compatible Netscape version browser

to the following file:

/opt/SUNWspro/docs/index.html

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

% man workshop
Before You Begin xvii

■ Manuals are available from the docs.sun.comsm Web site.

The docs.sun.com Web site (http://docs.sun.com) enables you to read,

print, and buy Sun Microsystems manuals through the Internet. If you cannot

find a manual, see the documentation index installed with the product on your

local system or network.

Accessing Related Documentation

The following table describes related documentation that is available through the

docs.sun.com Web site.

Ordering Sun Documentation

You can order product documentation directly from Sun through the

docs.sun.com Web site or from Fatbrain.com, an Internet bookstore. You can find

the Sun Documentation Center on Fatbrain.com at the following URL:

http://www.fatbrain.com/documentation/sun

Document Collection Document Title Description

Numerical Computation

Guide Collection

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Solaris 8 Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris 8 Software

Developer Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris 8 Software

Developer Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
xviii C++ Migration Guide • July 2001

Commercially Available Books

The following is a partial list of available books on the C++ language.

The C++ Programming Language 3rd edition, Bjarne Stroustrup (Addison-Wesley,

1997).

The C++ Standard Library, Nicolai Josuttis (Addison-Wesley, 1999).

Generic Programming and the STL, Matthew Austern (Addison-Wesley, 1999).

Standard C++ IOStreams and Locales, Angelika Langer and Klaus Kreft (Addison-

Wesley, 2000).

Thinking in C++, Volume 1, Second Edition, Bruce Eckel (Prentice Hall, 2000).

The Annotated C++ Reference Manual, Margaret A. Ellis and Bjarne Stroustrup,

(Addison-Wesley, 1990).

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides (Addison-Wesley, 1995).

C++ Primer, Third Edition, Stanley B. Lippman and Josee Lajoie (Addison-Wesley,

1998).

Effective C++—50 Ways to Improve Your Programs and Designs, Second Edition, Scott

Meyers (Addison-Wesley, 1998).

More Effective C++—35 Ways to Improve Your Programs and Designs, Scott Meyers

(Addison-Wesley, 1996).

Efficient C++: Performance Programming Techniques, Dov Bulka and David Mayhew

(Addison-Wesley, 2000).

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com
Before You Begin xix

xx C++ Migration Guide • July 2001

CHAPTER 1

Introduction

In this book, the C++ 4.0, 4.0.1, 4.1, and 4.2 compilers are referred to collectively as

“C++ 4,” and the C++ 5.0, 5.1, 5.2, and 5.3 compilers are referred to collectively as

“C++ 5.” To a large degree, C++ source code that compiled and ran under C++ 4

continues to work under the C++ 5 compilers, with a few exceptions that are due to

changes in the C++ language definition. The compiler provides a compatibility mode

(–compat [=4]) that allows nearly all of your C++ 4 code to continue to work

unchanged.

Note – Object code that is compiled in standard mode (the default mode) using

version 5.0, version 5.1, version 5.2, or version 5.3 of the C++ compiler is not

compatible with C++ code from any earlier compiler. You can still use self-contained

libraries of older object code with the 5.0, 5.1, 5.2, and 5.3 compiler versions. The

details are covered in Section 1.3 “Binary Compatibility Issues.”

1.1 The C++ Language
C++ was first described in The C++ Programming Language (1986) by Bjarne

Stroustrup, and later more formally in The Annotated C++ Reference Manual (the

ARM) (1990), by Margaret Ellis and Bjarne Stroustrup. The Sun C++ 4 compiler

versions were based primarily on the definition in the ARM, with additions from the

then-emerging C++ standard. The additions selected for inclusion in C++ 4, and

particularly in the C++ 4.2 compiler, were mainly those that did not cause source or

binary incompatibility.
1-1

C++ is now the subject of an international standard, ISO/IEC 14882:1998

Programming Languages — C++. The C++ 5.3 compiler in standard mode implements

nearly all of the language as specified in the standard. The readme file that

accompanies the current release describes departures from requirements in the

standard.

Some changes in the C++ language definition prevent compilation of old source

code without minor changes. The most obvious example is that the entire C++

standard library is defined in namespace std . The traditional first C++ program

no longer compiles under a strictly conforming compiler because the standard name

of the header is now <iostream> (without the .h), and the names cout and endl
are in namespace std , not in the global namespace. The Sun WorkShop C++

compiler, as an extension, provides a header <iostream.h> which allows that

program to compile even in standard mode. Besides the source code changes

required, such language changes create binary incompatibilities, and so were not

introduced into the Sun C++ compiler prior to version 5.0.

Some newer C++ language features also required changes in the binary

representation of programs. This subject is discussed in some detail in Section 1.3

“Binary Compatibility Issues.”

1.2 Compiler Modes of Operation
The C++ compiler has two modes of operation, standard mode and compatibility
mode.

1.2.1 Standard Mode

Standard mode implements most of the C++ International Standard, and has some

source incompatibilities with the language accepted by C++ 4, as noted earlier.

More importantly, in standard mode, the C++ 5 compilers use an application binary

interface (ABI) different from that of C++ 4. Code generated by the compiler in

standard mode is generally incompatible with, and cannot be linked with, code from

the various C++ 4 compilers. This subject is discussed in more detail in Section 1.3

“Binary Compatibility Issues.”

#include <iostream.h>
int main() { cout << “Hello, world!” << endl; }
1-2 C++ Migration Guide • July 2001

You should update your code to compile in standard mode, for several reasons:

■ Compatibility mode is not available for 64-bit programs.

■ You can’t use important standard C++ features in compatibility mode.

■ New code written to the C++ standard might not compile in compatibility mode,

meaning you can’t import future new code into the application.

■ Since you can’t link 4.2 and standard-mode C++ code together, you might need to

maintain two versions of object libraries.

■ Compatibility mode will not be supported forever.

1.2.2 Compatibility Mode

To provide a migration path from C++ 4 to standard mode, the compiler provides a

compatibility mode (-compat [=4]). The compatibility mode is fully binary-

compatible and mostly source-compatible with the C++ 4 compilers. (Compatible
means upward compatible. Older source and binary code works with the new

compiler, but you cannot depend on code intended for the new compiler working

with an old compiler.) Compatibility mode is not binary-compatible with standard

mode. Compatibility mode is available for Solaris 2.6, Solaris 7, and Solaris 8

operating environments on IA and SPARC platforms, but not for SPARC V9 (64-bit)

processors.

Note – In this document, the term “IA” refers to the Intel 32-bit processor

architecture, which includes the Pentium, Pentium Pro, and Pentium II, Pentium II

Xeon, Celeron, Pentium III, and Pentium III Xeon processors and compatible

microprocessor chips made by AMD and Cyrix.

Reasons to use compatibility mode:

■ You have C++ object libraries compiled with a 4.2 compiler and you can’t

recompile them in standard mode. (For example, you don’t have the source code.)

■ You need to ship a product immediately, and your source code won’t compile in

standard mode.

Note – Under most conditions, you cannot link object files and libraries compiled in

compatibility mode (-compat [=4]) with object files and libraries compiled in

standard mode (the default mode). For more information, see Section 1.3.2 “Mixing

Old and New Binaries.”
Chapter 1 Introduction 1-3

1.3 Binary Compatibility Issues
An application binary interface, or ABI, defines the machine-level characteristics of the

object program produced by a compiler. It includes the sizes and alignment

requirements of basic types, the layout of structured or aggregate types, the way in

which functions are called, the actual names of entities defined in a program, and

many other features. Much of the C++ ABI for the Solaris operating environment is

the same as the basic Solaris ABI, which is the ABI for the C language.

1.3.1 Language Changes

C++ introduced many features (such as class member functions, overloaded

functions and operators, type-safe linkage, exceptions, and templates) that did not

correspond to anything in the ABI for C. Each major new version of C++ added

language features that could not be implemented using the previous ABI. Necessary

ABI changes have involved the way class objects are laid out, or the way in which

some functions are called, and the way type-safe linkage (“name mangling”) can be

implemented.

The C++ 4.0 compiler implemented the language defined by the ARM. By the time

the C++ 4.2 compiler was released, the C++ committee had introduced many new

language features, some requiring a change in the ABI. Because it was certain that

additional ABI changes would be required for as-yet unknown language additions

or changes, Sun elected to implement only those new features that did not require a

change to the ABI. The intent was to minimize the inconvenience of having to

maintain correspondence of binary files compiled with different compiler versions.

When the C++ standard was published, Sun has designed a new ABI that allows the

full C++ language to be implemented. The C++ 5 compilers use the new ABI by

default.

One example of language changes affecting the ABI is the new names, signatures,

and semantics of the new and delete free-store functions. Another is the new rule

that a template function and non-template function with the same signature are

nevertheless different functions. This rule required a change in “name mangling,”

which created a binary incompatibility with older compiled code. The introduction

of type bool also created an ABI change, particularly regarding the interface to the

standard library. Because the ABI needed to change, aspects of the old ABI that

resulted in needlessly inefficient runtime code were improved.
1-4 C++ Migration Guide • July 2001

1.3.2 Mixing Old and New Binaries

It is an overstatement to say that you cannot link old binaries (object files and

libraries compiled by the 4.2 compiler or compiled by the C++ 5 compilers in

compatibility mode) with new binaries (object files and libraries compiled by the

C++ 5 compilers in standard mode). You can link old binaries with new binaries (as

defined in this paragraph) under the following conditions.

■ Either exceptions are not used, exceptions are used only in the old binaries, or

exceptions are used only in the new binaries. If you have exceptions in the 4.2

code (or compatibility mode code), then you must link libC before you link

libCrun . If you have exceptions in the code that is compiled by the C++ 5

compilers in standard mode, then you must link libCrun before you link libC .

■ The files and libraries present a C interface.

Sometimes a library is coded in C++ for convenience, yet presents only a C

interface to the outside world. Put simply, having a C interface means that a client

cannot tell the program was written in C++. More specifically, having a C

interface means that all of the following are true:

■ All externally called functions have C linkage and use only C types for

parameters and returned values.

■ All pointers-to-function in the interface have C linkage and use only C types

for parameters and returned value.

■ All externally visible types are C types.

■ All externally available objects have C types.

■ No C++ exceptions escape from or are passed into the library.

■ Use of cin , cout , cerr , or clog is not permitted.

If a library meets the C-interface criteria, it can be used wherever a C library can be

used. In particular, such libraries can be compiled with one version of the C++

compiler and linked with object files compiled with a different version, provided

they do not mix exception handling.

However, if any of these conditions are violated, the files and libraries cannot be

linked together. If an attempted link succeeds, which is doubtful, the program does

not run correctly.

Note that if you use the C compiler (cc) to link an application with a C-interface

library, and if that library needs C++ run-time support, then you must create a

dependency on either libC (compatibility mode) or libCrun (standard mode)

using one of the following methods. If the C-interface library does not need C++

run-time support, then you do not need to link with libC or libCrun .
Chapter 1 Introduction 1-5

■ Archived C-Interface Library. When providing an archived C-interface library,

you must provide instructions on how to use the library.

■ Standard Mode. If the C-interface library was built with the C++ compiler (CC)

in standard mode (the default), then the user must add -lCrun to the cc
command line when using the C-interface library.

■ Compatibility Mode. If the C-interface library was built with the C++

compiler (CC) in compatibility mode (-compat), then the user must add -lC to

the cc command line when using the C-interface library

■ Shared C-Interface Library. When providing a shared C-interface library, you

must create a dependency on libC or libCrun at the time that you build the

library. When the shared library has the correct dependency, you do not need to

add -lC or -lCrun to the cc command line when you use the library.

■ Standard Mode. If the C-interface library is being built in standard mode (the

default mode), add -lCrun to the CCcommand line when you build the

library.

■ Compatibility Mode. If the C-interface library is being built in compatibility

mode (-compat), add -lC to the CCcommand line when you build the library.

1.4 Conditional Expressions
The C++ standard introduced a change in the rules for conditional expressions. The

difference shows up only in an expression like

The critical issue is having an assignment following the colon when no grouping

parentheses are present.

The 4.2 compiler used the original C++ rule and treats that expression as if you had

written

That is, the value of c will be assigned to either a or b depending on the value of e.

e ? a : b = c

(e ? a : b) = c
1-6 C++ Migration Guide • July 2001

The compiler now uses the new C++ rule in both compatibility and standard mode.

It treats that expression as if you had written

That is, c will be assigned to b if and only if e is false.

Solution: Always use parentheses to indicate which meaning you intend. You can

then be sure the code will have the same meaning when compiled by any compiler.

1.5 Function Pointers and void*
In C there is no implicit conversion between pointer-to-function and void* . The

ARM added an implicit conversion between function pointers and void* “if the

value would fit.” C++ 4.2 implemented that rule. The implicit conversion was later

removed from C++, since it causes unexpected function overloading behavior, and

because it reduces portability of code. In addition, there is no longer any conversion,

even with a cast, between pointer-to-function and void* .

The compiler now issues a warning for implicit and explicit conversions between

pointer-to-function and void* . In standard mode, the compiler no longer recognizes

such implicit conversions when resolving overloaded function calls. Such code that

compiled with the 4.2 compiler now generates an error (no matching function) in

standard mode. (The compiler emits an anachronism warning in compatibility

mode.) If you have code that depends on the implicit conversion for proper overload

resolution, you need to add a cast. For example:

With the 4.2 compiler, the marked line in the code example calls f(void*). Now, in

standard mode, there is no match, and you get an error message. You can add an

explicit cast, such as f((void*)g) , but you will get a warning because the code

e ? a : (b = c)

int g(int);
typedef void (*fptr)();
int f(void*);
int f(fptr);
void foo()
{

f(g); // This line has different behavior
}

Chapter 1 Introduction 1-7

violates the C++ standard. Conversions between function pointers and void* are

valid on all versions of the Solaris operating environment, but are not portable to all

platforms.

C++ does not have a “universal function pointer” corresponding to void* . With

C++ on all supported platforms, all function pointers have the same size and

representation. You can therefore use any convenient function pointer type to hold

the value of any function pointer. This solution is portable to most platforms. As

always, you must convert the pointer value back to its original type before

attempting to call the function that is pointed to. See also Section 3.11 “Pointers to

extern "C" Functions” on page 3-18.

1.6 Anticipating Future Mangling Changes
There are some instances where the compiler does not meet the C++ standard

regarding declarations that refer to the same entry. In these instances, your program

will not get the correct linking behavior. To avoid this problem, follow these rules.

When the mangling problem is fixed in a later release, the names will still be

mangled in the same way.

■ Don’t use gratuitous const keywords in function declarations.

Declaring a value parameter const is not supposed to have any effect on the

function signature or on how the function can be called, so don’t declare it const .

■ Don’t use both a typedef and its expanded form in any one function declaration.

int f(const int); // the const has no meaning, don’t use it
int f(int); // do this instead
int f(const int i) { ... } // don’t do this
int f(int i) { ... } // do this instead

typedef int int32;
int* foo(int*, int32*); // don’t do this
// don’t use both int* and int32* in the same function declaration
// write one of the following consistently instead
int* foo(int*, int*);
int32* foo(int32*, int32*);
1-8 C++ Migration Guide • July 2001

■ Use only typedefs for parameters or return types that are pointer-to-function.

■ Don’t use const arrays in function declarations.

Unfortunately, there is no direct workaround for this declaration.

If you can’t avoid code that is affected by this mangling problem, for example

because it occurs in headers or libraries that you don’t own, you can use weak

symbols to equate a declaration with its definition, as shown in the following

example.

You must use the mangled name versions in these types of declarations.

void function(void (*)(), void (*)()); // don’t do this
typedef void (*pvf)();
void function(pvf, pvf); // do this instead

void function(const int (*)[4]); // don’t use this

int cpp_function(int arg) { return arg; }
#pragma_weak "__1c_missing_mangled_name" = cpp_function
Chapter 1 Introduction 1-9

1-10 C++ Migration Guide • July 2001

CHAPTER 2

Using Compatibility Mode

This chapter describes how to compile code that was intended for the C++ 4

compilers.

2.1 Compatibility Mode
The compiler options for compatibility mode are (both versions mean the same

thing):

For example:

There are some minor differences between using the C++ 4 compilers and the C++ 5

compilers in compatibility mode, as described in the following sections.

-compat
-compat=4

example% CC -compat -O myfile.cc mylib.a -o myprog
2-1

2.2 Keywords in Compatibility Mode
By default, some of the new C++ keywords are recognized as keywords in

compatibility mode, but you can turn off most of these keywords with compiler

options, as shown in the following table. Changing the source code to avoid the

keywords is preferable to using the compiler options.

Keyword typename cannot be disabled. The additional new C++ keywords,

described in TABLE 3-1, are disabled by default in compatibility mode.

2.3 Language Semantics
The C++ 5 compilers do a better job of enforcing some C++ language rules. They are

also less permissive about anachronisms.

If you compile with C++ 4 and enable anachronism warnings, you might discover

code that has always been invalid, but that much older C++ compilers accepted

anyway. It was always explicit policy (that is, stated in the manuals) that the

anachronisms would cease to be supported in future compiler releases. The

anachronisms consist mainly of violating access (private, protected) rules, violating

type-matching rules, and using compiler-generated temporary variables as the target

of reference parameters.

The remainder of this section discusses the rules that previously were not enforced,

but are now enforced by the C++ compiler.

Note – These rules are enforced by the C++ compiler in both compatibility mode

and standard mode.

TABLE 2-1 Keywords in Compatibility Mode

Keyword Compiler Option to Disable

explicit -features=no%explicit

export -features=no%export

mutable -features=no%mutable

typename cannot disable
2-2 C++ Migration Guide • July 2001

2.3.1 Copy Constructor

When initializing an object, or passing or returning a value of class type, the copy

constructor must be accessible.

Solution: Make the copy constructor accessible. Usually, it is given public access.

2.3.2 Static Storage Class

The static storage class applies to objects and functions, not to types.

Solution: In this example, the static keyword does not have any meaning for class

C and should be removed.

2.3.3 Operators new and delete

When allocating an object with new, the matching operator delete must be

accessible.

Solution: Make the delete operator accessible. Usually, it is given public access.

class T {
 T(const T&); // private
public:
 T();
};
T f1(T t) { return t; } // Error, can’t return a T
void f2() { f1(T()); } // Error, can’t pass a T

static class C {...}; // Error, cannot use static here
static class D {...} d; // OK, d is static

class T {
 void operator delete(void*); // private
 public:
 void* operator new(size_t);
};
T* t = new T; // Error, operator delete is not accessible
Chapter 2 Using Compatibility Mode 2-3

A count is not allowed in a delete expression.

2.3.4 new const

If you allocate a const object with new, it must be initialized.

2.3.5 Conditional Expression

The C++ standard introduced a change in the rules for conditional expressions. The

C++ compiler uses the new rule in both standard mode and compatibility mode. For

more information, see Section 1.4 “Conditional Expressions” on page 1-6.

2.3.6 Default Parameter Value

Default parameter values on overloaded operators or on pointers to functions are

not allowed.

Solution: You must write the code some other way, probably by providing

additional function or function pointer declarations.

delete [5] p; // Error: should be delete [] p;

const int* ip1 = new const int; // Error
const int* ip2 = new const int(3); // OK

T operator+(T t1, T t2 = T(0)); // Error
void (*fptr)(int = 3); // Error
2-4 C++ Migration Guide • July 2001

2.3.7 Trailing Commas

Trailing commas in function argument lists are not allowed.

Solution: Remove the extra comma.

2.3.8 Passing of const and Literal Values

Passing a const or literal value to a nonconstant reference parameter is not allowed.

Solution: If the function does not modify its parameter, change the declaration to

take a const reference (for this example, const T&). If the function modifies the

parameter, you cannot pass it a const or a literal value. An alternative is to create

an explicit nonconstant temporary and pass that instead. See Section 3.7 “String

Literals and char*” on page 3-10 for related information.

2.3.9 Conversion Between Pointer-to-Function and

void*

The C++ compiler, in both compatibility and standard mode, now issues a warning

for implicit and explicit conversions between pointer-to-function and void* . For

more information, see Section 1.5 “Function Pointers and void*” on page 1-7.

f(int i, int j,){ ... } // Error

void f(T&);
extern const T t;
void g() {
 f(t); // Error
}

Chapter 2 Using Compatibility Mode 2-5

2.3.10 Type enum

If an object of enum type is assigned a value, that value must have the same enum
type.

Solution: Use a cast.

2.3.11 Member-Initializer List

The old C++ syntax of implied base-class name in a member-initializer list is not

allowed.

2.3.12 const and volatile Qualifiers

const and volatile qualifiers on pointers must match properly when passing

arguments to functions, and when initializing variables.

Solution: If the function does not modify the characters it points to, declare the

parameter to be const char* . Otherwise, make a nonconstant copy of the string

and pass that instead.

enum E { zero=0, one=1 };
E foo(E e)
{
 e = 0; // Error
 e = E(0); // OK
 return e;
}

struct B { B(int); };
struct D : B {
 D(int i) : (i) { } // Error, should be B(i)
};

void f(char *);
const char* p = “hello”;
f(p); // Error: passing const char* to non-const char*
2-6 C++ Migration Guide • July 2001

2.3.13 Nested Type

Nested types cannot be accessed from outside the enclosing class without a class

qualifier.

2.3.14 Class Template Definitions and Declarations

In class template definitions and declarations, appending the type argument

bracketed by < > to the class’s name has never been valid, but versions 4 and 5.0 of

the C++ compiler did not report the error. For example, in the following code the

<T> appended to MyClass is invalid for both the definition and the declaration.

Solution: Remove the bracketed type argument from the class name, as shown in the

following code.

2.4 Template Compilation Model
The template compilation model for compatibility mode is different from the 4.2

compilation model. For more information about the new model, refer to Section 3.3.5

“Template Repository” on page 3-6.

struct Outer {
 struct Inner { int i; };
 int j;
};
Inner x; // Error; should be Outer::Inner

template<class T> class MyClass<T> { ... }; // definition
template<class T> class MyClass<T>; // declaration

template<class T> class MyClass { ... }; // definition
template<class T> class MyClass; // declaration
Chapter 2 Using Compatibility Mode 2-7

2-8 C++ Migration Guide • July 2001

CHAPTER 3

Using Standard Mode

This chapter explains use of the standard mode, which is the default compilation

mode for the C++ compiler.

3.1 Standard Mode
Since standard mode is the primary default, no option is required. You can also

choose the compiler option:

For example:

3.2 Keywords in Standard Mode
C++ has added several new keywords. If you use any of these as identifiers, you get

numerous and sometimes bizarre error messages. (Determining when a programmer

has used a keyword as an identifier is quite difficult, and the compiler error

messages might not be helpful in such cases.)

-compat=5

example% CC -O myfile.cc mylib.a -o myprog
3-1

Most of the new keywords can be disabled with a compiler option, as shown in the

following table. Some are logically related, and are enabled or disabled as a group.

The addendum to the ISO C standard introduced the C standard header

<iso646.h> , which defined new macros to generate the special tokens. The C++

standard has introduced these spellings directly as reserved words. (When the

alternative spellings are enabled, including <iso646.h> in your program has no net

effect.) The meaning of these tokens is shown in the following table.

TABLE 3-1 Keywords in Standard Mode

Keyword Compiler Option to Disable

bool, true, false -features=no%bool

explicit -features=no%explicit

export -features=no%export

mutable -features=no%mutable

namespace, using cannot disable

typename cannot disable

and, and_eq, bitand, compl, not,
not_eq, or, bitor, xor, xor_eq

-features=no%altspell (see below)

TABLE 3-2 Alternative Token Spellings

Token Spelling

&& and

&&= and_eq

& bitand

~ compl

! not

!= not_eq

|| or

| bitor

~ xor

~= xor_eq
3-2 C++ Migration Guide • July 2001

3.3 Templates
The C++ standard has some new rules for templates that make old code

nonconforming, particularly code involving the use of the new keyword typename .

The C++ compiler does not enforce these rules, but it does recognize this keyword.

In most cases, template code that worked under the 4.2 compiler continues to work,

although the 4.2 version accepted some invalid template code. You should migrate

your code to the new C++ rules as development schedules permit, since future

compilers will enforce the new rules.

3.3.1 Resolving Type Names

The C++ standard has new rules for determining whether an identifier is the name

of a type. The following example illustrates the new rules.

The new language rules state that no base class that is dependent on a template

parameter is searched automatically to resolve type names in a template, and that no

name coming from a base class or template parameter class is a type name unless it

is declared to be so with the keyword typename .

The first invalid line (1) in the code example tries to inherit U from B as a type

without the qualifying class name and without the keyword typename . The second

invalid line (2) uses type V coming from the template parameter, but omits the

keyword typename . The definition of s is valid because the type doesn’t depend on

a base class or member of a template parameter. Similarly, the definition of t is valid

because it uses type T directly, a template parameter that must be a type.

typedef int S;
template< class T > class B { typedef int U; };
template< class T > class C : public B<T> {
 S s; // OK
 T t; // OK
 U x; // 1 No longer valid
 T::V z; // 2 No longer valid
};
Chapter 3 Using Standard Mode 3-3

The following modified example is correct.

3.3.2 Converting to the New Rules

A problem for migrating code is that typename was not previously a keyword. If

existing code uses typename as an identifier, you must first change the name to

something else.

For code that must work with old and new compilers, you can add statements

similar to the following example to a project-wide header file.

The effect is to conditionally replace typename with nothing. When using older

compilers (such as Sun C++ 4.2) that do not recognize typename , add

-DTYPENAME_NOT_RECOGNIZEDto the set of compiler options in your makefile.

3.3.3 Explicit Instantiation and Specialization

In the ARM, and in the 4.2 compiler, there was no standard way to request an

explicit instantiation of a template using the template definition. The C++ standard,

and the C++ compiler in standard mode, provide a syntax for explicit instantiation

typedef int S;
template< class T > class B { typedef int U; };
template< class T > class C : public B<T> {
 S s; // OK
 T t; // OK
 typename B::U x; // OK
 typename T::V z; // OK
};

#ifdef TYPENAME_NOT_RECOGNIZED
#define typename
#endif
3-4 C++ Migration Guide • July 2001

using the template definition; the keyword template followed by a declaration of

the type. For example, the last line in the following code forces the instantiation of

class MyClass on type int , using the default template definition.

The syntax for explicit specializations has changed. To declare an explicit

specialization, or to provide the full definition, you now prefix the declaration with

template<> . (Notice the empty angle brackets.) For example:

The declaration forms mean that the programmer has somewhere provided a

different definition (specialization) for the template for the provided arguments, and

the compiler is not to use the default template definition for those arguments.

In standard mode, the compiler accepts the old syntax as an anachronism. The 4.2

compiler accepted the new specialization syntax, but it did not treat code using the

new syntax correctly in every case. (The draft standard changed after the feature was

put into the 4.2 compiler.) For maximum portability of template specialization code,

you can add statements similar to the following to a project-wide header:

Then you would write, for example:

Specialize class MyClass<char>; // declaration

template<class T> class MyClass {
 ...
};
template class MyClass<int>; // explicit instantiation

// specialization of MyClass
class MyClass<char>; // old-style declaration
class MyClass<char> { ... }; // old-style definition
template<> class MyClass<char>; // standard declaration
template<> class MyClass<char> { ... }; // standard definition

#ifdef OLD_SPECIALIZATION_SYNTAX
#define Specialize
#else
#define Specialize template<>
#endif
Chapter 3 Using Standard Mode 3-5

3.3.4 Class Template Definitions and Declarations

In class template definitions and declarations, appending the type argument

bracketed by < > to the class’s name has never been valid, but versions 4 and 5.0 of

the C++ compiler did not report the error. For example, in the following code the

<T> appended to MyClass is invalid for both the definition and the declaration.

To resolve the problem, remove the bracketed type argument from the class name, as

shown in the following code.

3.3.5 Template Repository

The Sun implementation of C++ templates uses a repository for template instances.

The C++ 4.2 compiler stored the repository in a directory called Templates.DB . The

C++ 5 compilers, by default, use directories called SunWS_cache and

SunWS_config . SunWS_cache contains the working files and SunWS_config
contains the configuration files, specifically, the template options file

(SunWs_config/CC_tmpl_opt). (See the C++ Users’ Guide.)

If you have makefiles that for some reason mention repository directories by name,

you need to modify the makefiles. Furthermore, the internal structure of the

repository has changed, so any makefiles that access the contents of Templates.DB
no longer work.

In addition, standard C++ programs probably make heavier use of templates. Paying

attention to the considerations of multiple programs or projects that share directories

is very important. If possible, use the simplest organization: compile only files

belonging to the same program or library in any one directory. The template

repository then applies to exactly one program. If you compile a different program

in the same directory, clear the repository by using CCadmin -clean . See the C++
User’s Guide for more information.

The danger in more than one program sharing the same repository is that different

definitions for the same name might be required. This situation cannot be handled

correctly when the repository is shared.

template<class T> class MyClass<T> { ... }; // definition
template<class T> class MyClass<T>; // declaration

template<class T> class MyClass { ... }; // definition
template<class T> class MyClass; // declaration
3-6 C++ Migration Guide • July 2001

3.3.6 Templates and the Standard Library

The C++ standard library contains many templates, and many new standard header

names to access those templates. The Sun C++ standard library puts declarations in

the template headers, and implementation of the templates in separate files. If one of

your project file names matches the name of a new template header, the compiler

might pick up the wrong implementation file and cause numerous, bizarre errors.

Suppose you have your own template called vector , putting the implementation in

a file called vector.cc . Depending on file locations and command-line options, the

compiler might pick up your vector.cc when it needs the one from the standard

library, or vice-versa. When the export keyword and exported templates are

implemented in a future compiler version, the situation will be worse.

Here are two recommendations for preventing current and future problems:

■ Do not use any of the standard header names as names of your template files. All

of the standard library is in namespace std , so you won’t get direct name

conflicts with your own templates or classes. You can still get indirect conflicts

from using declarations or directives, so do not duplicate template names from

the standard library. The standard headers involving templates are as follows:

■ Put template implementations in the header (.h) file, instead of in a separate file,

to prevent implementation file name conflicts. See the C++ Users’ Guide for more

information.

3.4 Class Name Injection
The C++ standard says that the name of a class is “injected” into the class itself. This

is a change from earlier C++ rules. Formerly, the name of the class was not found as

a name within the class.

algorithm bitset complex deque exception
fstream functional iomanip ios iosfwd
iostream istream iterator limits list
locale map memory numeric ostream
queue set sstream stack stdexcept
streambuf string typeinfo utility valarray
vector
Chapter 3 Using Standard Mode 3-7

In most cases, this subtle change has no effect on an existing program. In some cases,

this change can make a formerly valid program invalid, and sometimes can result in

a change of meaning. For example:

To determine the meaning of X as a default parameter value, the compiler looks up

the name X in the current scope, then in successive outer scopes, until it finds an X:

■ Under the old C++ rules, the name of the class X would not be found in the class

scope, and the integer name X at file scope hides the class name X. The default

value is therefore 5.

■ Under the new C++ rules, the name of class X is found in the class itself. The

compiler finds X in the class and generates an error, because the X it finds is a type

name, not an integer value.

Because having a type and an object with the same name in the same scope is

considered poor programming practice, this error should rarely occur. If you get

such an error, you can fix the code by qualifying the variable with the proper scope,

such as:

The next example (adapted from the standard library) illustrates another scoping

problem.

CODE EXAMPLE 3-1 Class Name Injection Problem 1

const int X = 5;

class X {
int i;

public:
X(int j = X) : // what is the default value X?
i(j) { }

};

X(int j = ::X)

CODE EXAMPLE 3-2 Class Name Injection Problem 2

template <class T> class iterator { ... };

template <class T> class list {
public:

class iterator { ... };
class const_iterator : public ::iterator<T> {

public:
const_iterator(const iterator&); // which iterator?

};
};
3-8 C++ Migration Guide • July 2001

What is the parameter type to the constructor for const_iterator ? Under the old

C++ rules, the compiler does not find the name iterator in the scope of class

const_iterator , so it searches the next outer scope, class list<T> . That scope

has a member type iterator . The parameter type is therefore

list<T>::iterator .

Under the new C++ rules, the name of a class is inserted into its own scope. In

particular, the name of a base class is inserted into the base class. When the compiler

starts searching for a name in a derived class scope, it can now find the name of a

base class. Since the type of the parameter to the const_iterator constructor does

not have a scope qualifier, the name that is found is the name of the

const_iterator base class. The parameter type is therefore the global

::iterator<T> , instead of list<T>::iterator .

To get the intended result, you can change some of the names, or use a scope

qualifier, such as:

3.5 for -Statement Variables
The ARM rules stated that a variable declared in the header of a for -statement was

inserted into the scope containing the for -statement. The C++ committee felt that

this rule was incorrect, and that the variable’s scope should end at the end of the

for -statement. (In addition, the rule didn’t cover some common cases and, as a

result, some code worked differently with different compilers.) The C++ committee

changed the rule accordingly. Many compilers, C++ 4.2 included, continued to use

the old rule.

In the following example, the if -statement is valid under the old rules, but invalid

under the new rules, because k has gone out of scope.

In compatibility mode, the C++ compiler uses the old rule by default. You can

instruct the compiler to use the new rule with the -features=localfor compiler

option.

const_iterator(const list<T>::iterator&);

for(int k = 0; k < 10; ++k) {
 ...
}
if(k == 10) ... // Is this code OK?
Chapter 3 Using Standard Mode 3-9

In standard mode, the C++ compiler uses the new rule by default. You can instruct

the compiler to use the old rule with the -features=no%localfor compiler

option.

You can write code that works properly with all compilers in any mode by pulling

the declaration out of the for -statement header, as shown in the following example.

3.6 Conversion Between Pointer-to-
Function and void*
The C++ compiler, in both compatibility and standard mode, now issues a warning

for implicit and explicit conversions between pointer-to-function and void* . In

standard mode, the compiler no longer recognizes such implicit conversions when

resolving overloaded function calls. For more information, see Section 1.5 “Function

Pointers and void*” on page 1-7.

3.7 String Literals and char*
Some history might help clarify this subtle issue. Standard C introduced the const
keyword and the concept of constant objects, neither of which was present in the

original C language (“K&R” C). A string literal such as “Hello world” logically

should be const in order to prevent nonsensical results, as in the following

example.

int k;
for(k = 0; k < 10; ++k) {
 ...
}
if(k == 10) ... // Always OK

#define GREETING “Hello world”
char* greet = GREETING; // No compiler complaint
greet[0] = 'G';
printf("%s", GREETING); // Prints “Gello world” on some systems
3-10 C++ Migration Guide • July 2001

In both C and C++, the results of attempting to modify a string literal are undefined.

The previous example produces the odd result shown if the implementation chooses

to use the same writable storage for identical string literals.

Because so much then-existing code looked like the second line in the preceding

example, the C Standards Committee in 1989 did not want to make string literals

const . The C++ language originally followed the C language rule. The C++

Standards Committee later decided that the C++ goal of type safety was more

important, and changed the rule.

In standard C++, string literals are constant and have type const char[] . The

second line of code in the previous example is not valid in standard C++. Similarly,

a function parameter declared as char* should no longer be passed a string literal.

However, the C++ standard also provides for a deprecated conversion of a string

literal from const char[] to char* . Some examples are:

If a function does not modify, directly or indirectly, a character array that is passed

as an argument, the parameter should be declared const char* (or const
char[]). You might find that the need to add const modifiers propagates through

the program; as you add modifiers, still more become necessary. (This phenomenon

is sometimes called “const poisoning.”)

In standard mode, the compiler issues a warning about the deprecated conversion of

a string literal to char* . If you were careful to use const wherever it was

appropriate in your existing programs, they probably compile without these

warnings under the new rules.

For function overloading purposes, a string literal is always regarded as const in

standard mode. For example:

char *p1 = "Hello"; // Formerly OK, now deprecated
const char* p2 = “Hello”; // OK
void f(char*);
f(p1); // Always OK, since p1 is not declared const
f(p2); // Always an error, passing const char* to char*
f("Hello"); // Formerly OK, now deprecated
void g(const char*);
g(p1); // Always OK
g(p2); // Always OK
g("Hello"); // Always OK

void f(char*);
void f(const char*);
f("Hello"); // which f gets called?
Chapter 3 Using Standard Mode 3-11

If the above example is compiled in compatibility mode (or with the 4.2 compiler),

function f(char*) is called. If compiled in standard mode, function f(const
char*) is called.

In standard mode, the compiler will put literal strings in read-only memory by

default. If you then attempt to modify the string (which might happen due to

automatic conversion to char*) the program aborts with a memory violation.

With the following example, the C++ compiler in compatibility mode puts the string

literal in writable memory, just like the 4.2 compiler did. The program will run,

although it technically has undefined behavior. In standard mode, the compiler puts

the string literal in read-only memory by default, and the program aborts with a

memory fault. You should therefore heed all warnings about conversion of string

literals, and try to fix your program so the conversions do not occur. Such changes

will ensure your program is correct for every C++ implementation.

You can change the compiler behavior with the use of a compiler option:

■ The -features=conststrings compiler option instructs the compiler to put

string literals in read-only memory even in compatibility mode.

■ The -features=no%conststrings compiler option causes the compiler to put

string literals in writable memory even in standard mode.

You might find it convenient to use the standard C++ string class instead of C-

style strings. The C++ string class does not have the problems associated with string

literals, because standard string objects can be declared separately as const or

not, and can be passed by reference, by pointer, or by value to functions.

3.8 Conditional Expressions
The C++ standard introduced a change in the rules for conditional expressions. The

C++ compiler uses the new rule in both standard mode and compatibility mode. For

more information, see Section 1.4 “Conditional Expressions” on page 1-6.

void f(char* p) { p[0] = ‘J’; }

int main()
{
 f("Hello"); // conversion from const char[] to char*
}

3-12 C++ Migration Guide • July 2001

3.9 New Forms of new and delete
There are four issues regarding the new forms of new and delete :

■ Array forms

■ Exception specifications

■ Replacement functions

■ Header files

The old rules are used by default in compatibility mode, and the new rules are used

by default in standard mode. Changing from the default is not recommended,

because the compatibility-mode run-time library (libC) depends on the old

definitions and behavior, and the standard-mode run-time library (libCstd)

depends on the new definitions and behavior.

The compiler predefines the macro _ARRAYNEWto the value 1 when the new rules

are in force. The macro is not defined when the old rules are in use. The following

example is explained in more detail in the next section:

3.9.1 Array Forms of new and delete

The C++ standard adds new forms of operator new and operator delete that

are called when allocating or deallocating an array. Previously, there was only one

form of these operator functions. In addition, when you allocate an array, only the

global form of operator new and operator delete would be used, never a

class-specific form. The C++ 4.2 compiler did not support the new forms, since their

use requires an ABI change.

In addition to these functions:

// Replacement functions
#ifdef _ARRAYNEW
 void* operator new(size_t) throw(std::bad_alloc);
 void* operator new[](size_t) throw(std::bad_alloc);
#else
 void* operator new(size_t);
#endif

void* operator new(size_t);
void operator delete(void*);
Chapter 3 Using Standard Mode 3-13

there are now:

In all cases (previous and current), you can write replacements for the versions

found in the run-time library. The two forms are provided so that you can use a

different memory pool for arrays than for single objects, and so that a class can

provide its own version of operator new for arrays.

Under both sets of rules, when you write new T, where T is some type, function

operator new(size_t) gets called. However, when you write new T[n] under the

new rules, function operator new[](size_t) is called.

Similarly, under both sets of rules, when you write delete p , operator
delete(void*) is called. Under the new rules, when you write delete [] p ,

operator delete[](void*) is called.

You can write class-specific versions of the array forms of these functions as well.

3.9.2 Exception Specifications

Under the old rules, all forms of operator new returned a null pointer if the

allocation failed. Under the new rules, the ordinary forms of operator new throw

an exception if allocation fails, and do not return any value. Special forms of

operator new that return zero instead of throwing an exception are available. All

versions of operator new and operator delete have an exception-specification.

The declarations found in standard header <new> are:

void* operator new[](size_t);
void operator delete[](void*);
3-14 C++ Migration Guide • July 2001

Defensive code such as the following example no longer works as previously

intended. If the allocation fails, the operator new that is called automatically from

the new expression throws an exception, and the test for zero never occurs.

There are two solutions:

■ Rewrite the code to catch the exception. For example:

CODE EXAMPLE 3-3 Standard Header <new>

namespace std {
 class bad_alloc;
 struct nothrow_t {};
 extern const nothrow_t nothrow;

}
// single-object forms
void* operator new(size_t size) throw(std::bad_alloc);
void* operator new(size_t size, const std::nothrow_t&) throw();
void operator delete(void* ptr) throw();
void operator delete(void* ptr, const std::nothrow_t&) throw();
// array forms
void* operator new[](size_t size) throw(std::bad_alloc);
void* operator new[](size_t size, const std::nothrow_t&) throw();
void operator delete[](void* ptr) throw();
void operator delete[](void* ptr, const std::nothrow_t&) throw();

T* p = new T;
if(p == 0) { // No longer OK
 ... // Handle allocation failure
}
... // Use p

T* p = 0;
try {
 p = new T;
}
catch(std::bad_alloc&) {
 ... // Handle allocation failure
}
... // Use p
Chapter 3 Using Standard Mode 3-15

■ Use the nothrow version of operator new instead. For example:

If you prefer not to use any exceptions in your code, you can use the second form. If

you are using exceptions in your code, consider using the first form.

If you did not previously verify whether operator new succeeded, you can leave

your existing code unchanged. It then aborts immediately on allocation failure

instead of progressing to some point where an invalid memory reference occurs.

3.9.3 Replacement Functions

If you have replacement versions of operator new and delete , they must match

the signatures shown in CODE EXAMPLE 3-3 on page 3-15, including the exception

specifications on the functions. In addition, they must implement the same

semantics. The normal forms of operator new must throw a bad_alloc exception

on failure; the nothrow version must not throw any exception, but must return zero

on failure. The forms of operator delete must not throw any exception. Code in

the standard library uses the global operator new and delete and depends on this

behavior for correct operation. Third-party libraries can have similar dependencies.

The global version of operator new[]() in the C++ runtime library just calls the

single-object version, operator new() , as required by the C++ standard. If you

replace the global version of operator new() from the C++ standard library, you

don’t need to replace the global version of operator new[] () .

The C++ standard prohibits replacing the predefined “placement” forms of

operator new:

They cannot be replaced in standard mode, although the 4.2 compiler allowed it.

You can, of course, write your own placement versions with different parameter

lists.

T* p = new (std::nothrow) T;
... remainder of code unchanged from original

void* operator new(std::size_t, void*) throw();
void* operator new[](std::size_t, void*) throw();
3-16 C++ Migration Guide • July 2001

3.9.4 Header Inclusions

In compatibility mode, include <new.h> as always. In standard mode, include

<new> (no .h) instead. To ease in transition, a header <new.h> is available in

standard mode that makes the names from namespace std available in the global

namespace. This header also provides typedefs that make the old names for

exceptions correspond to the new exception names. See Section 3.13 “Standard

Exceptions” on page 3-23.

3.10 Boolean Type
The Boolean keywords—bool , true , and false —are controlled by the presence or

absence of Boolean keyword recognition in the compiler:

■ In compatibility mode, Boolean keyword recognition is off by default. You can

turn on recognition of the Boolean keywords with the compiler option

-features=bool .

■ In standard mode, Boolean keyword recognition is on by default. You can turn off

recognition of these keywords using the compiler option -features=no%bool .

Turning on the keywords in compatibility mode is a good idea because it exposes

any current use of the keywords in your code.

Note – Even if your old code uses a compatible definition of the Boolean type, the

actual type is different, affecting name mangling. You must recompile all old code

using the Boolean type in function parameters if you do this.

Turning off the Boolean keywords in standard mode is not a good idea, because the

C++ standard library depends on the built-in bool type, which would not be

available. When you later turn on bool , more problems ensue, particularly with

name mangling.

The compiler predefines the macro _BOOLto be 1 when the Boolean keywords are

enabled. It is not defined when they are disabled. For example:

// define a reasonably compatible bool type
#if !defined(_BOOL) && !defined(BOOL_TYPE)
 #define BOOL_TYPE // Local include guard

typedef unsigned char bool; // Standard-mode bool uses 1 byte
 const bool true = 1;
 const bool false = 0;
#endif
Chapter 3 Using Standard Mode 3-17

You cannot define a Boolean type in compatibility mode that will work exactly like

the new built-in bool type. This is one reason why a built-in Boolean type was

added to C++.

3.11 Pointers to extern "C" Functions
A function can be declared with a language linkage, such as

If you do not specify a linkage, C++ linkage is assumed. You can specify C++ linkage

explicitly:

You can also group declarations:

This technique is used extensively in the standard headers.

3.11.1 Language Linkage

Language linkage means the way in which a function is called: where the arguments

are placed, where the return value is to be found, and so on. Declaring a language

linkage does not mean the function is written in that language. It means that the

function is called as if it were written in that language. Thus, declaring a C++

function to have C linkage means the C++ function can be called from a function

written in C.

A language linkage applied to a function declaration applies to the return type and

all its parameters that have function or pointer-to-function type.

extern "C" int f1(int);

extern "C++" int f2(int);

extern "C" {
int g1(); // C linkage
int g2(); // C linkage
int g3(); // C linkage

} // no semicolon
3-18 C++ Migration Guide • July 2001

In compatibility mode, the compiler implements the ARM rule that the language

linkage is not part of the function type. In particular, you can declare a pointer to a

function without regard to the linkage of the pointer, or of a function assigned to it.

This is the same behavior as the C++ 4.2 compiler.

In standard mode, the compiler implements the new rule that the language linkage

is part of its type, and is part of the type of a pointer to function. The linkages must

therefore match.

The following example shows functions and function pointers with C and C++

linkage, in all four possible combinations. In compatibility mode the compiler

accepts all combinations, just like the 4.2 compiler. In standard mode the compiler

accepts the mismatched combinations only as an anachronism.

If you encounter a problem, be sure that the pointers to be used with C linkage

functions are declared with C linkage, and the pointers to be used with C++ linkage

functions are declared without a linkage specifier, or with C++ linkage. For example:

In the worst case, where you really do have mismatched pointer and function, you

can write a “wrapper” around the function to avoid any compiler complaints. In the

following example, composer is a C function taking a pointer to a function with C

linkage.

extern "C" int fc(int) { return 1; } // fc has C linkage
int fcpp(int) { return 1; } // fcpp has C++ linkage
// fp1 and fp2 have C++ linkage
int (*fp1)(int) = fc; // Mismatch
int (*fp2)(int) = fcpp; // OK
// fp3 and fp4 have C linkage
extern "C" int (*fp3)(int) = fc; // OK
extern "C" int (*fp4)(int) = fcpp; // Mismatch

extern "C" {
 int fc(int);
 int (*fp1)(int) = fc; // Both have C linkage
}
int fcpp(int);
int (*fp2)(int) = fcpp; // Both have C++ linkage

extern "C" void composer(int(*)(int));
extern "C++" int foo(int);
composer(foo); // Mismatch
Chapter 3 Using Standard Mode 3-19

To pass function foo (which has C++ linkage) to the function composer , create a C-

linkage function foo_wrapper that presents a C interface to foo :

In addition to eliminating the compiler complaint, this solution works even if C and

C++ functions really have different linkage.

3.11.2 A Less-Portable Solution

The Sun implementation of C and C++ function linkage is binary-compatible. That is

not the case with every C++ implementation, although it is reasonably common. If

you are not concerned with possible incompatibility, you can employ a cast to use a

C++-linkage function as if it were a C-linkage function.

A good example concerns static member functions. Prior to the new C++ language

rule regarding linkage being part of a function’s type, the usual advice was to treat a

static member function of a class as a function with C linkage. Such a practice

circumvented the limitation that you cannot declare any linkage for a class member

function. You might have code like the following:

As recommended in the previous section, you can create a function wrapper that

calls T::memfunc and then change all the set_callback calls to use a wrapper

instead of T::memfunc . Such code will be correct and completely portable.

extern "C" void composer(int(*)(int));
extern "C++" int foo(int);
extern "C" int foo_wrapper(int i) { return foo(i); }
composer(foo_wrapper); // OK

// Existing code
typedef int (*cfuncptr)(int);
extern "C" void set_callback(cfuncptr);
class T {
 ...
 static int memfunc(int);
};
...
set_callback(T::memfunc); // no longer valid
3-20 C++ Migration Guide • July 2001

An alternative is to create an overloaded version of set_callback that takes a

function with C++ linkage and calls the original, as in the following example:

This example requires only a small modification to existing code. An extra version of

the function that sets the callback was added. Existing code that called the original

set_callback now calls the overloaded version that in turn calls the original

version. Since the overloaded version is an inline function, there is no runtime

overhead at all.

Although this technique works with Sun C++, it is not guaranteed to work with

every C++ implementation because the calling sequence for C and C++ functions

may be different on other systems.

3.11.3 Pointers to Functions as Function Parameters

A subtle consequence of the new rule for language linkage involves functions that

take pointers to functions as parameters, such as:

An unchanged rule about language linkage is that if you declare a function with

language linkage and follow it with a definition of the same function with no

language linkage specified, the previous language linkage applies. For example:

// Modified code
extern "C" {
 typedef int (*cfuncptr)(int); // ptr to C function
 void set_callback(cfuncptr);
}
typedef int (*cppfuncptr)(int); // ptr to C++ function
inline void set_callback(cppfuncptr f) // overloaded version
 { set_callback((cfuncptr)f); }
class T {
 ...
 static int memfunc(int);
};
...
set_callback(T::memfunc); // unchanged from original code

extern "C" void composer(int(*)(int));

extern "C" int f(int);
int f(int i) { ... } // Has “C” linkage
Chapter 3 Using Standard Mode 3-21

In this example, function f has C linkage. The definition that follows the declaration

(the declaration might be in a header file that gets included) inherits the linkage

specification of the declaration. But suppose the function takes a parameter of type

pointer-to-function, as in the following example:

Under the old rule, and with the 4.2 compiler, there is only one function g. Under

the new rule, the first line declares a function g with C linkage that takes a pointer-

to-function-with-C-linkage. The second line defines a function that takes a pointer-

to-function-with-C++-linkage. The two functions are not the same; the second

function has C++ linkage. Because linkage is part of the type of a pointer-to-

function, the two lines refer to a pair of overloaded functions each called g. Code

that depended on these being the same function breaks. Very likely, the code fails

during compilation or linking.

Good programming practice puts the linkage specification on the function definition

as well as on the declaration:

You can further reduce confusion about types by using a typedef for the function

parameter:

3.12 Runtime Type Identification (RTTI)
In compatibility mode, RTTI is off by default, as with the 4.2 compiler. In standard

mode, RTTI is on and cannot be turned off. Under the old ABI, RTTI has a noticeable

cost in data size and in efficiency. (RTTI could not be implemented directly under

the old ABI, and an inefficient indirect method was required.) In standard mode

using the new ABI, RTTI has negligible cost. (This is one of several improvements in

the ABI.)

extern "C" int g(int(*)(int));
int g(int(*pf)(int)) { ... } // Is this “C” or “C++” linkage?

extern "C" int g(int(*)(int));
extern "C" int g(int(*pf)(int)) { ... }

extern "C" {typedef int (*pfc)(int);} // ptr to C-linkage function
extern "C" int g(pfc);
extern "C" int g(pfc pf) { ... }
3-22 C++ Migration Guide • July 2001

3.13 Standard Exceptions
The C++ 4.2 compiler used the names related to standard exceptions that appeared

in the C++ draft standard at the time the compiler was prepared. The names in the

C++ standard have changed since then. In standard mode, the C++ 5 compilers use

the standard names, as shown in the following table.

The public members of the classes (xmsg vs. exception , and xalloc vs.

bad_alloc) are different, as is the way you use the classes.

3.14 Order of the Destruction of Static Objects
A static object is an object with static storage duration. The static object can be global

or in a namespace. It can be a static variable local to a function or it can be a static

data member of a class.

The C++ standard requires that static objects be destroyed in the reverse order of

their construction. In addition, the destruction of these objects might need to be

intermixed with functions that are registered with the atexit() function.

Earlier versions of the Sun WorkShop C++ compiler destroyed the global static

objects that are created in any one module in the reverse order of their construction.

However, the correct destruction order over the entire program was not assured.

Beginning with version 5.1 of the C++ compiler, static objects are destroyed in strict

reverse order of their construction. For example, suppose there are three static

objects of type T:

■ One object is at global scope in file1 .

■ A second object is at global scope in file2 .

■ The third object is at local scope in a function.

TABLE 3-3 Exception-Related Type Names

Old name Standard Name Description

xmsg exception Base class for standard exceptions

xalloc bad_alloc Thrown by failed allocation request

terminate_function terminate_handler Type of a terminate handler function

unexpected_function unexpected_handler Type of an unexpected-exception

handler function
Chapter 3 Using Standard Mode 3-23

We can’t predict which of the two global objects will be created first, the one in

file1 or the one in file2 . However, the global object that is created first will be

destroyed after the other global object is destroyed.

The local static object is created when its function is called. If the function is called

after the creation of both the global static objects, the local object is destroyed before

the global objects are destroyed.

The C++ standard places additional requirements on destruction of static objects in

relation to functions registered with the atexit() function. If a function F is

registered with atexit() after the construction of a static object X, F must be called

at program exit before X is destroyed. Conversely, if function F is registered with

atexit() before X is constructed, F must be called at program exit after X is

destroyed.

Here is an example of this rule.

At program start, t1 is created, then main runs. Main calls foo() . The foo()
function performs the following in this order.

1. Create t2

2. Register bar() with atexit()

3. Create t3

Upon reaching the end of main, exit is called automatically. The sequence of the

exit processing must be the following.

1. Destroy t3 ; t3 was constructed after bar() was registered with atexit()

2. Run bar()

3. Destroy t2 ; t2 was constructed before bar() was registered with atexit()

// T is a type having a destructor
void bar();
void foo()
{
 static T t2;
 atexit(bar);
 static T t3;
}
T t1;
int main()
{
 foo();
}

3-24 C++ Migration Guide • July 2001

4. Destroy t1 ; t1 was the first thing constructed, and therefore the last thing

destroyed

Support for this interleaving of static destructors and the atexit() processing

requires help from the Solaris run-time library libc.so . This support is available

beginning with Solaris 8. A C++ program that is compiled with version 5.1, version

5.2, or version 5.3 of the C++ compiler looks, at runtime, for a special symbol in the

library to determine whether it is currently running on a version of Solaris that has

this support. If the support is available, the static destructors are properly

interleaved with atexit -registered functions. If the program is running on a

version of Solaris that does not have this support, the destructors are still executed

in the proper order, but they are not interleaved with atexit -registered functions.

Notice that the determination is made by the program each time it runs. It does not

matter what version of Solaris you use to build the program. As long as the Solaris

run-time library libc.so is linked dynamically (which happens by default), the

interleaving at program exit will happen if the version of Solaris that is running the

program supports it.

Different compilers provide different levels of support for the correct order of the

destruction of static objects. To improve the portability of your code, the correctness

of your program should not depend on the exact order in which static objects are

destroyed.

If your program depends on a particular order of destruction and worked with an

older compiler, the order required by the standard might break the program in

standard mode. The -features=no%strictdestrorder command option

disables the strict ordering of destruction.
Chapter 3 Using Standard Mode 3-25

3-26 C++ Migration Guide • July 2001

CHAPTER 4

Using Iostreams and Library
Headers

This chapter explains the library and header file changes that were implemented in

the C++ 5.0 compiler. You must consider these changes when migrating code that

was intended for C++ 4 compilers for use with the C++ 5 compilers.

4.1 Iostreams
The C++ 4.2 compiler implemented classic iostreams, which never had a formal

definition. The implementation is compatible with the version released with Cfront
(1990), with some bug fixes.

Standard C++ defines a new and expanded iostreams (standard iostreams). It is better

defined, feature-rich, and supports writing internationalized code.

In compatibility mode, you get classic iostreams, the same version supplied with the

C++ 4.2 compiler. Any existing iostream code that works with the 4.2 compiler

should work exactly the same way when compiling in compatibility mode

(-compat[=4]).

Note – Two versions of the classic iostream runtime library are supplied with the

compiler. One version is compiled with the compiler in compatibility mode, and is

the same as the library used with C++ 4.2. The other version is compiled from the

same source code, but with the compiler in standard mode. The source-code

interface is the same, but the binary code in the library has the standard-mode ABI.

See Section 1.3 “Binary Compatibility Issues” on page 1-4.
4-1

In standard mode, you get standard iostreams by default. If you use the standard

form of header names (without “.h ”), you get the standard headers, with all

declarations in namespace std .

Four of the standard headers are also provided in a form ending with “.h ” that

makes the header names available in the global namespace via using-declarations.

■ <fstream.h>
■ <iomanip.h>
■ <iostream.h>
■ <strstream.h>

These headers are a Sun extension, and code that depends on them might not be

portable. These headers allow you to compile existing (simple) iostream code

without having to change the code, even though standard iostreams are used instead

of classic iostreams. For example, CODE EXAMPLE 4-2 will compile with either classic

iostreams or with the Sun implementation of standard iostreams.

Not all classic iostream code is compatible with standard iostreams. If your classic

iostream code does not compile, you must either modify your code or use classic

iostreams entirely.

To use classic iostreams in standard mode, use the compiler option

-library=iostream on the CCcommand line. When this option is used, a special

directory is searched that contains the classic iostream header files, and the classic

iostream runtime library is linked with your program. You must use this option on

all compilations that make up your program as well as on the final link phase or you

will get inconsistent program results.

CODE EXAMPLE 4-1 Using Standard iostream Name Forms

#include <iostream>
int main()
{
 std::cout << "Hello, world!" << std::endl;
}

CODE EXAMPLE 4-2 Using Classic iostream Name Forms

#include <iostream.h>
int main()
{
 cout << "Hello, world!" << endl;
}

4-2 C++ Migration Guide • July 2001

Note – Mixing old and new forms of iostreams—including the standard input and

output streams cin , cout , and cerr —in the same program can cause severe

problems and is not recommended.

With classic iostreams, you can write your own forward declarations for iostream

classes instead of including one of the iostream headers. For example:

This approach will not work for standard iostreams, because classic names

(istream , ofstream , streambuf , and so forth) are not the names of classes in

standard iostreams. They are typedefs referring to specializations of class templates.

With standard iostreams, you cannot provide your own forward declarations of

iostream classes. Instead, to provide correct forward declarations of the iostream

classes, include the standard header <iosfwd> .

To write code that will work with both standard and classic iostreams, you can

include the full headers instead of using forward declarations. For example:

CODE EXAMPLE 4-3 Forward Declaration With Classic iostreams

// valid for classic iostreams only
class istream;
class ostream;
class Myclass;
istream& operator>>(istream&, MyClass&);
ostream& operator<<(ostream&, const MyClass&);

CODE EXAMPLE 4-4 Forward Declaration With Standard iostreams

// valid for standard iostreams only
#include <iosfwd>
using std::istream;
using std::ostream;
class MyClass;
istream& operator>>(istream&, MyClass&);
ostream& operator<<(ostream&, const MyClass&);

CODE EXAMPLE 4-5 Code for Both Classic and Standard iostreams

// valid for classic and standard iostreams with Sun WorkShop C++
#include <iostream.h>
class MyClass;
istream& operator>>(istream&, MyClass&);
ostream& operator<<(ostream&, const MyClass&);
Chapter 4 Using Iostreams and Library Headers 4-3

4.2 Task (Coroutine) Library
The coroutine library, accessed through the <task.h> header, is no longer

supported. Compared to the coroutine library, Solaris threads are better integrated

into the language development tools (particularly the debugger) and the operating

system.

4.3 Rogue Wave Tools.h++
The C++ compiler contains two versions of the Tools.h++ library:

■ One that works with classic iostreams. This version of the Tools.h++ library is

compatible with the Tools.h++ library that was shipped with earlier versions of

the compiler.

■ Standard Mode. To use the classic iostreams version of Tools.h++ in standard

mode (the default mode), use the -library=rwtools7,iostream option.

■ Compatibility Mode. To use the classic iostreams version of Tools.h++ in

compatibility mode (-compat [=4]), use the -library=rwtools7 option.

■ One that works with standard iostreams. This version of the Tools.h++ library is

incompatible with the classic iostreams version of Tools.h++. This version is

available only in standard mode. It is not available in compatibility mode

(-compat [=4]).

To use the standard iostreams version of the library, use the

-library=rwtools7_std option.

Refer to the C++ User’s Guide or the CC(1) man page for more information about

accessing Tools.h++ .

4.4 C Library Headers
In compatibility mode, you use the standard headers from C as before. The headers

are in the /usr/include directory, supplied with the Solaris version you are using.

The C++ standard has changed the definition of the standard C headers.
4-4 C++ Migration Guide • July 2001

For clarification, the headers being discussed are the 17 headers defined by the ISO

C standard (ISO 9899:1990) plus its later addendum (1994):

The hundreds of other headers that reside in and below the /usr/include
directory are not affected by this language change because they are not part of the C

language standard.

You can include and use any of these headers in a C++ program the same as in

previous versions of Sun C++, but some restrictions apply.

The C++ standard requires that the names of types, objects, and functions in these

headers appear in namespace std as well as in the global namespace. This in turn

means that the versions of these headers supplied with the Solaris 2.6 and 7

operating environments cannot be used directly. If you compile in standard mode,

you must use the versions of these headers that are supplied with the C++ compiler.

If you use the wrong headers, your program can fail to compile or link.

With the Solaris 2.6 and 7 operating environments, you must use the standard

spelling for the header, not a path name. For example, write:

and not either of these:

With the Solaris 8 operating environment, the standard C headers in /usr/include
are correct for C++, and are used by the C++ compiler automatically. That is, if you

write

you will get the C++ compiler’s version of stdio.h when compiling on the Solaris

2.6 and 7 operating environments, but the Solaris version of stdio.h when

compiling on the Solaris 8 operating environment. With the Solaris 8 operating

<assert.h> <ctype.h> <errno.h> <float.h> <iso646.h>
<limits.h> <locale.h> <math.h> <setjmp.h> <signal.h>
<stdarg.h> <stdio.h> <stdlib.h> <string.h> <time.h>
<wchar.h> <wctype.h>

#include <stdio.h> // Correct

#include "/usr/include/stdio.h" // Wrong
#include </usr/include/stdio.h> // Wrong

#include <stdio.h>
Chapter 4 Using Iostreams and Library Headers 4-5

environment, there is no restriction against using the explicit path name in the

include statement. However, use of path names, such as

</usr/include/stdio.h> , does make the code unportable.

The C++ standard also introduces a second version of each of the 17 standard C

headers. For each header of the form <NAME.h>, there is an additional header of the

form <cNAME>. That is, the trailing “.h ” is dropped, and a leading “c” is added.

Some examples: <cstdio> , <cstring> , <cctype> .

These headers contain the names from the original form of the header but appear

only in namespace std . An example of use according to the C++ standard is:

Because the code uses <cstdio> instead of <stdio.h> , the name printf appears

only in namespace std and not in the global namespace. You must either qualify the

name printf , or add a using-declaration:

The standard C headers in /usr/include contain many declarations that are not

allowed by the C standard. The declarations are there for historical reasons,

primarily because UNIX systems have traditionally had the extra declarations in

those headers, or because other standards (like POSIX or XOPEN) require them. For

continued compatibility, these extra names appear in the Sun C++ versions of the

<NAME.h> headers, but only in the global namespace. These extra names do not

appear in the <cNAME>versions of the headers.

#include <cstdio>
int main() {
 printf("Hello, "); // Error, printf unknown
 std::printf("world!\n"); // OK
}

#include <cstdio>
using std::printf;
int main() {
 printf("Hello, "); // OK
 std::printf("world!\n"); // OK
}

4-6 C++ Migration Guide • July 2001

Because these new headers have never been used in any previous program, there is

no compatibility or historical issue. Consequently, you might not find the <cNAME>
headers to be useful for general programming. If you want to write maximally

portable standard C++ code, however, be assured that the <cNAME>headers do not

contain any unportable declarations. The following example uses <stdio.h> :

The following example uses <cstdio> :

Function fileno is an extra function that for compatibility continues to appear in

<stdio.h> , but only in the global namespace, not in namespace std . Because it is

an extra function, it does not appear in <cstdio> at all.

Note – The C++ compiler’s versions of the <wchar.h> , <cwchar> , <wctype.h> ,

and <cwctype> header files for the Solaris 2.6 operating environment are missing

some functions because the Solaris 2.6 environment does not provide the capabilities

required by the functions.

The C++ standard allows using both the <NAME.h> and <cNAME>versions of the

standard C headers in the same compilation unit. Although you probably would not

do this on purpose, it can happen when you include, for example, <cstdlib> in

your own code, and some project header you use includes <stdlib.h> . On Solaris

2.6 operating environments, this mixing does not work for some headers,

particularly for the <wchar.h> /<cwchar> and <wctype.h> /<cwctype> header

pairs. If you get compiler complaints about one of these headers, use the <NAME.h>
version of the header in your code instead of the <cNAME>version.

#include <stdio.h>
extern FILE* f; // std::FILE would also be OK
int func1() { return fileno(f); } // OK
int func2() { return std::fileno(f); } // Error

#include <cstdio>
extern std::FILE* f; // FILE is only in namespace std
int func1() { return fileno(f); } // Error
int func2() { return std::fileno(f); } // Error
Chapter 4 Using Iostreams and Library Headers 4-7

4.5 Standard Header Implementation
The C++ User’s Guide explains in detail how standard headers are implemented

along with the reasons for the implementation method. When you include any of the

standard C or C++ headers, the compiler actually searches for a file with the

specified name suffixed by “.SUNWCCh”. For example, <string> causes a search for

<string.SUNWCCh> and <string.h> causes a search for <string.h.SUNWCCh> .

The compiler’s include directory contains both spellings of the names, and each

pair of spellings refers to the same file. For example, in directory include/CC/Cstd
you find both string and string.SUNWCCh . They refer to the same file, the one

you get when you include <string> .

In error messages and debugger information, the suffix is suppressed. If you include

<string> , error message and debugger references to that file mention string . File

dependency information uses the name string.SUNWCCh to avoid problems with

default makefile rules regarding unsuffixed names. If you want to search for just

header files (using the find command, for example) you can look for the .SUNWCCh
suffix.
4-8 C++ Migration Guide • July 2001

CHAPTER 5

Migrating From C++ 3.0

This chapter discusses the migration of working code from a C++ 3.0 or 3.0.1

compiler to enable compilation of the code with the C++ 5 compilers in

compatibility mode (-compat [=4]). See Chapter 2 for more information on

migrating your code for compiling in compatibility mode. After you have modified

your code to enable compilation in compatibility mode, refer to Chapter 3 for advice

on migrating your code for standard mode compilation.

Note – Object files compiled with C++ 3.0 are not compatible with object files

compiled by the C++ 5 compilers. You must recompile the programs with a C++ 5

compiler.

5.1 Keywords Added Since the C++ 3.0
Compiler
The following keywords have been added to C++ since the C++ 3.0 compiler. If you

use any of these as identifiers, you should change the names. As shown in TABLE 3-1

on page 3-2, some keywords can be turned off.

TABLE 5-1 Keywords Added Since C++ 3.0 Compiler

bool, false, true
const_cast, dynamic_cast, reinterpret_cast, static_cast
explicit
export
mutable
namespace, using
typename
wchar_t
5-1

5.2 Source Code Incompatibilities
The following list describes changes that must be made to code that was written for

the C++ 3.0 compiler before compiling the code with the C++ 5 compilers.

■ K&R-style function definitions are no longer allowed. You must use prototype-

style definitions.

■ You cannot set a global variable _new_handler by assignment. Call function

set_new_handler() instead.

■ Global operator new() is always used when there is no in-class version. C++

3.0 incorrectly used an outer-class version in preference to the global version. In

the following example, C++ 3.0 would incorrectly use Outer::operator new to

allocate space.

■ typedef names cannot be used as struct (or class or union) tags. For

example:

Use tags on structures (and classes and unions). The simplest way to fix the

earlier example is to use the typedef name also as the tag. Such code is allowed

in both C and C++:

int f(a) int a; { ... } // Error

class Outer {
public:

void* operator new(size_t);
class Inner {
... // No operator new
};

};
Outer::Inner* p = new Outer::Inner; // Which operator new?

typedef struct { int x; } S;
struct S b; // Was OK in C++ 3.0, now an error
S c; // Always OK

typedef struct S { int x; } S;
struct S b; // Always OK
S c; // Always OK
5-2 C++ Migration Guide • July 2001

■ You cannot redefine a name from an outer scope once it has been used in a class.

Such redefinition is disallowed by the C++ standard because it can be disastrous,

but the C++ 3.0 compiler did not detect the situation. This redefinition is now

rejected as an error. For example:

The solution is to change the name of one of the definitions of T.

■ The C++ 3.0 compiler had a bug that allowed a pointer to a function taking

unspecified parameters to act in some circumstances as a “universal” pointer-to-

function, as in the following example. The C++ rule is that function pointer types

must match.

■ Comma-expressions are not allowed in null pointer constants. Although a literal

zero is a null pointer constant, an expression such as (anything, 0) is not:

typedef int T;
class C {

T iv; // type int
typedef float T; // redefine T -- error
T fv; // type float

};

typedef (*pfp)(int,char);
typedef (*ufp)(...);
int foo(int,char);
pfp p = (ufp)foo; // Allowed by C++ 3.0, now an error

int f();
char* g()
{

 return (f(), 0); // OK in 3.0, now an error
// should be:
// return (f(), (char*)0); // OK
// or two statements:
// f();
// return 0;

}

Chapter 5 Migrating From C++ 3.0 5-3

■ Classes with base classes cannot be initialized with aggregate-initialization

syntax. The C++ 3.0 compiler allowed this if no virtual functions were present.

You should write a constructor for the class instead.

struct Base { int i; };
struct Derived : Base { int j; };
Derived d = {1, 2}; // OK with 3.0, now an error
5-4 C++ Migration Guide • July 2001

CHAPTER 6

Moving From C to C++

This chapter describes how to move programs from C to C++.

C programs generally require little modification to compile as C++ programs. C

and C++ are link compatible. You do not have to modify compiled C code to link it

with C++ code. See “Commercially Available Books” on page xix for a list of books

on the C++ language.

6.1 Reserved and Predefined Words
TABLE 6-1 shows all reserved keywords in C++ and C, plus keywords that are

predefined by C++. Keywords that are reserved in C++ but not in C are shown in

boldface.

TABLE 6-1 Reserved Keywords

asm do if return typedef

auto double inline short typeid

bool dynamic_cast int signed typename

break else long sizeof union

case enum mutable static unsigned

catch explicit namespace static_cast using

char export new struct virtual

class extern operator switch void

const false private template volatile

const_cast float protected this wchar_t
6-1

__STDC__ is predefined to the value 0. For example:

produces:

The following table lists reserved words for alternate representations of certain

operators and punctuators specified in the C++ standard.

continue for public throw while

default friend register true

delete goto reinterpret_cast try

#include <stdio.h>
main()
{
 #ifdef __STDC__
 printf("yes\n");
 #else
 printf("no\n");
 #endif

 #if __STDC__ ==0
 printf("yes\n");
 #else
 printf("no\n");
 #endif
}

yes
yes

TABLE 6-2 C++ Reserved Words for Operators and Punctuators

and bitor not or xor

and_eq compl not_eq or_eq xor_eq

bitand

TABLE 6-1 Reserved Keywords (Continued)
6-2 C++ Migration Guide • July 2001

6.2 Creating Generic Header Files
K&R C, ANSI C, and C++ require different header files. To make C++ header files

conform to K&R C and ANSI C standards so that they are generic, use the macro

_ _cplusplus to separate C++ code from C code. The macro _ _STDC_ _ is defined

in both ANSI C and C++. Use this macro to separate C++ or ANSI C code from K&R

C code. For more information, see the C++ Programming Guide.

Note – Early C++ compilers pre-defined the macro c_plusplus , which is no longer

supported. Use __cplusplus instead.

6.3 Linking to C Functions
The compiler encodes C++ function names to allow overloading. To call a C

function, or a C++ function “masquerading” as a C function, you must prevent this

encoding. Do so by using the extern "C" declaration. For example:

This linkage specification does not affect the semantics of the program using

sqrt() , but simply causes the compiler to use the C naming conventions for

sqrt() .

Only one of a set of overloaded C++ functions can have C linkage. You can use C

linkage for C++ functions that you intend to call from a C program, but you would

only be able to use one instance of that function.

You cannot specify C linkage inside a function definition. Such declarations can only

be done at the global scope.

extern "C" {
double sqrt(double); //sqrt(double) has C linkage
 }
Chapter 6 Moving From C to C++ 6-3

6.4 Inlining Functions in Both C and C++
If an inline function definition is in source code that can be compiled by both the C

compiler and the C++ compiler, then the function must comply with the following

restrictions.

■ The inline function declaration and definition must be enclosed by a conditional

extern "C" statement as shown in the following example.

■ The inline function’s declaration and definition must meet the constraints

imposed by both languages.

■ The semantics of the function must be the same under both compilers. See

appendix D of the C++ standard for program constructs that might yield different

semantics in the two languages.

#ifdef __cplusplus
extern "C" {
#endif
inline int twice(int arg) { return arg + arg; }
#ifdef __cplusplus
}
#endif
6-4 C++ Migration Guide • July 2001

Index
NUMERICS
64-bit address space, 1-3

A
aggregate-initialization, 5-4

anachronisms, 2-2, 3-5, 3-19

Annotated Reference Manual (ARM), 1-1, 1-4, 1-7,

3-4, 3-9, 3-19

application binary interface (ABI), 1-2, 1-4 to 1-5

B
base-class name, 2-6

binary compatibility issues, 1-4 to 1-5

language changes, 1-4

mixing old and new binaries, 1-5

Boolean, 3-17

C
C interface, 1-5

C library headers, 4-4 to 4-7

C linkage, 3-19, 3-22, 6-3

C++ 3.0 compiler, 5-1 to 5-4

keywords added since, 5-1

source code incompatibilities, 5-2

C++ international standard, 1-2

C++ language, 1-1 to 1-2

changes, 1-2, 1-4

rules, 2-2

semantics, 2-2 to 2-7

C++ standard library, 1-2, 3-7, 3-17

C, using with C++, 6-3

char* , 3-10

class name injection, 3-7

comma-expressions, 5-3

-compat command, 2-1, 3-1

compatibility mode, 1-1, 1-3, 2-1 to 2-7

compilers, accessing, xvi

conditional expressions, 1-6

const
allocating with new, 2-4

future changes, 1-8

passing, 2-5

pointers, 2-6

string literals, 3-10

copy constructor, 2-3

coroutine library, 4-4

count in a delete-expression, 2-4

D
default parameter values, 2-4

delete , 2-3

new form, 3-13

new rules, 2-3

operator, 3-14, 3-16

documentation index, xvii

documentation, accessing, xvii
Index-1

E
enum type, 2-6

extern "C" , 3-18 to 3-22, 6-3

F
for-statement rules, 3-9

for-statement variables, 3-9

function pointer conversion, 1-7, 2-5, 3-10

functions, inlining, 6-4

G
global variable, 5-2

H
header files, 6-3

header inclusions, 3-17

headers, standard C, 4-6, 4-7

I
inlining functions, 6-4

iostreams, 4-1 to 4-3, 4-4

K
keywords, 2-2, 2-3, 3-1, 3-3, 3-4, 3-17, 5-1, 6-1

L
language linkage, 3-18, 3-21, 6-3

M
macros

__cplusplus , 6-3

__STDC__, 6-3

man pages, accessing, xv

mangling problems, avoiding, 1-8

MANPATH environment variable, setting, xvii

mode

compatibility, 1-3, 2-1 to 2-7

standard, 1-2, 3-1 to 3-25

N
name mangling, 1-4, 1-8

name redefining, 5-3

nested types, 2-7

new, 2-3, 2-4

new form, 3-13

new rules, 2-3

operator, 3-14, 3-16

O
operator

delete , 3-14, 3-16

new, 3-14, 3-16

P
passing const to non-const reference, 2-5

PATH environment variable, setting, xv

pointer conversion, 1-7, 2-5, 3-10

pointers to functions, 1-9, 3-18 to 3-22

See also function pointer conversion

Q
qualifiers, const and volatile , 2-6

R
repository, template, 3-6

reserved words, 6-1

return types

C interface, 1-5

class, 2-3

pointer-to-function, 1-9

runtime type identification (RTTI), 3-22
Index-2 C++ Migration Guide • July 2001

S
shell prompts, xv

Solaris versions supported, xv

SPARC V9, 1-3

standard exceptions, 3-23

standard header implementation, 4-8

standard mode, 1-2, 3-1 to 3-25

keywords, 3-1

static objects, destruction order, 3-23 to 3-25

static storage, 2-3

string literals, 3-10

T
templates, 3-3 to 3-7

and the C++ standard library, 3-7

class, declarations, 3-6

class, definitions, 3-6

compilation mode, 2-7

instantiation, explicit, 3-4

invalid type arguments, 2-7

repository, 3-6

specialization, 3-4

tokens, alternative spellings for, 3-2

Tools.h++, 4-4

trailing commas, 2-5

type names, resolving, 3-3

typedef
future changes, 1-8

restrictions, 5-2

typename, 2-2, 3-3, 3-4

typographic conventions, xiv

U
universal pointer-to-function, 5-3

V
void* conversion, 1-7, 2-5, 3-10

volatile pointers, 2-6
Index-3

Index-4 C++ Migration Guide • July 2001

	C++ Migration Guide
	Contents
	1. Introduction�1�1
	2. Using Compatibility Mode�2�1
	3. Using Standard Mode�3�1
	4. Using Iostreams and Library Headers�4�1
	5. Migrating From C++ 3.0�5�1
	6. Moving From C to C++�6�1

	Before You Begin
	How This Book Is Organized
	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun WorkShop Development Tools and Man Pages
	Accessing Sun WorkShop Compilers and Tools
	To Determine If You Need to Set Your PATH Environment Variable
	To Set Your PATH Environment Variable to Enable Access to Sun WorkShop Compilers and Tools

	Accessing Sun WorkShop Man Pages
	To Determine If You Need to Set Your MANPATH Environment Variable
	To Set Your MANPATH Environment Variable to Enable Access to Sun WorkShop Man Pages

	Accessing Sun WorkShop Documentation
	Accessing Related Documentation
	Ordering Sun Documentation
	Commercially Available Books
	Sending Your Comments

	Introduction
	1.1 The C++ Language
	1.2 Compiler Modes of Operation
	1.2.1 Standard Mode
	1.2.2 Compatibility Mode

	1.3 Binary Compatibility Issues
	1.3.1 Language Changes
	1.3.2 Mixing Old and New Binaries

	1.4 Conditional Expressions
	1.5 Function Pointers and void*
	1.6 Anticipating Future Mangling Changes

	Using Compatibility Mode
	2.1 Compatibility Mode
	2.2 Keywords in Compatibility Mode
	2.3 Language Semantics
	2.3.1 Copy Constructor
	2.3.2 Static Storage Class
	2.3.3 Operators new and delete
	2.3.4 new const
	2.3.5 Conditional Expression
	2.3.6 Default Parameter Value
	2.3.7 Trailing Commas
	2.3.8 Passing of const and Literal Values
	2.3.9 Conversion Between Pointer-to-Function and void*
	2.3.10 Type enum
	2.3.11 Member-Initializer List
	2.3.12 const and volatile Qualifiers
	2.3.13 Nested Type
	2.3.14 Class Template Definitions and Declarations

	2.4 Template Compilation Model

	Using Standard Mode
	3.1 Standard Mode
	3.2 Keywords in Standard Mode
	3.3 Templates
	3.3.1 Resolving Type Names
	3.3.2 Converting to the New Rules
	3.3.3 Explicit Instantiation and Specialization
	3.3.4 Class Template Definitions and Declarations
	3.3.5 Template Repository
	3.3.6 Templates and the Standard Library

	3.4 Class Name Injection
	3.5 for-Statement Variables
	3.6 Conversion Between Pointer-to- Function and void*
	3.7 String Literals and char*
	3.8 Conditional Expressions
	3.9 New Forms of new and delete
	3.9.1 Array Forms of new and delete
	3.9.2 Exception Specifications
	3.9.3 Replacement Functions
	3.9.4 Header Inclusions

	3.10 Boolean Type
	3.11 Pointers to extern "C" Functions
	3.11.1 Language Linkage
	3.11.2 A Less-Portable Solution
	3.11.3 Pointers to Functions as Function Parameters

	3.12 Runtime Type Identification (RTTI)
	3.13 Standard Exceptions
	3.14 Order of the Destruction of Static Objects

	Using Iostreams and Library Headers
	4.1 Iostreams
	4.2 Task (Coroutine) Library
	4.3 Rogue Wave Tools.h++
	4.4 C Library Headers
	4.5 Standard Header Implementation

	Migrating From C++ 3.0
	5.1 Keywords Added Since the C++ 3.0 Compiler
	5.2 Source Code Incompatibilities

	Moving From C to C++
	6.1 Reserved and Predefined Words
	6.2 Creating Generic Header Files
	6.3 Linking to C Functions
	6.4 Inlining Functions in Both C and C++

	Index

