
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303
U.S.A. 650-960-1300

Send comments about this document to: docfeedback@sun.com

C++ Interval Arithmetic
Programming Reference

Forte Developer 6 update 2
(Sun WorkShop 6 update 2)

Part No. 806-7998-10
July 2001, Revision A

Please
Recycle

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 USA. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or

document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape™, Netscape Navigator™, and the Netscape

Communications Corporation logo™, the following notice applies: Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, and Forte are trademarks, registered trademarks,

or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

Sun f90/f95 is derived from Cray CF90™, a product of Cray Inc.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2001 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune

partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation préalable et

écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de

caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape™, Netscape Navigator™, et the Netscape Communications Corporation logo™: Copyright 1995 Netscape Communications

Corporation. Tous droits réservés.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook2, Solaris, SunOS, JavaScript, SunExpress, Sun WorkShop, Sun WorkShop

Professional, Sun Performance Library, Sun Performance WorkShop, Sun Visual WorkShop, et Forte sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

Sun f90/f95 est derivé de CRAY CF90™, un produit de Cray Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Important Note on New Product
Names

As part of Sun’s new developer product strategy, we have changed the names of our

development tools from Sun WorkShop™ to Forte™ Developer products. The

products, as you can see, are the same high-quality products you have come to

expect from Sun; the only thing that has changed is the name.

We believe that the Forte™ name blends the traditional quality and focus of Sun’s

core programming tools with the multi-platform, business application deployment

focus of the Forte tools, such as Forte Fusion™ and Forte™ for Java™. The new

Forte organization delivers a complete array of tools for end-to-end application

development and deployment.

For users of the Sun WorkShop tools, the following is a simple mapping of the old

product names in WorkShop 5.0 to the new names in Forte Developer 6.

In addition to the name changes, there have been major changes to two of the

products.

■ Forte for High Performance Computing contains all the tools formerly found in

Sun Performance WorkShop Fortran and now includes the C++ compiler, so High

Performance Computing users need to purchase only one product for all their

development needs.

■ Forte Fortran Desktop Edition is identical to the former Sun Performance

WorkShop Personal Edition, except that the Fortran compilers in that product no

longer support the creation of automatically parallelized or explicit, directive-

based parallel code. This capability is still supported in the Fortran compilers in

Forte for High Performance Computing.

We appreciate your continued use of our development products and hope that we

can continue to fulfill your needs into the future.

Old Product Name New Product Name

Sun Visual WorkShop™ C++ Forte™ C++ Enterprise Edition 6

Sun Visual WorkShop™ C++ Personal

Edition

Forte™ C++ Personal Edition 6

Sun Performance WorkShop™ Fortran Forte™ for High Performance Computing 6

Sun Performance WorkShop™ Fortran

Personal Edition

Forte™ Fortran Desktop Edition 6

Sun WorkShop Professional™ C Forte™ C 6

Sun WorkShop™ University Edition Forte™ Developer University Edition 6

Contents

Before You Begin 1

Who Should Use This Book 1

How This Book Is Organized 1

What Is Not in This Book 2

Related Interval References 2

Online Resources 3

Typographic Conventions 4

Shell Prompts 5

Supported Platforms 5

Accessing Sun WorkShop Development Tools and Man Pages 5

Accessing Sun WorkShop Documentation 7

Accessing Related Documentation 8

Ordering Sun Documentation 8

Sending Your Comments 9

1. Using the Interval Arithmetic Library 11

1.1 What Is Interval Arithmetic? 11

1.2 C++ Interval Support Goal: Implementation Quality 11

1.2.1 Quality Interval Code 12
v

1.2.2 Narrow-Width Interval Results 12

1.2.3 Rapidly Executing Interval Code 13

1.2.4 Easy-to-Use Development Environment 13

1.2.5 The C++ Interval Class Compilation Interface 14

1.3 Writing Interval Code for C++ 15

1.3.1 Hello Interval World 16

1.3.2 interval External Representations 16

1.3.3 Interval Declaration and Initialization 17

1.3.4 interval Input/Output 18

1.3.5 Single-Number Input/Output 21

1.3.6 Arithmetic Expressions 24

1.3.7 interval -Specific Functions 25

1.3.8 Interval Versions of Standard Functions 26

1.4 Code Development Tools 28

1.4.1 Debugging Support 28

2. C++ Interval Arithmetic Library Reference 29

2.1 Character Set Notation 29

2.1.1 String Representation of an Interval Constant (SRIC) 30

2.1.2 Internal Approximation 33

2.2 interval Constructor 34

2.2.1 interval Constructor Examples 37

2.3 interval Arithmetic Expressions 40

2.4 Operators and Functions 40

2.4.1 Arithmetic Operators +, –, * , / 41

2.4.2 Power Function pow(X,n) and pow(X,Y) 45

2.5 Set Theoretic Functions 47

2.5.1 Hull: X U Y or interval_hull(X,Y) 50

2.5.2 Intersection: X∩Y or intersect(X,Y) 50
vi C++ Interval Arithmetic Programming Reference • July 2001

2.6 Set Relations 51

2.6.1 Disjoint: X ∩Y = ∅ or disjoint(X,Y) 51

2.6.2 Element: r ∈ Y or in(r,Y) 51

2.6.3 Interior: in_interior(X,Y) 52

2.6.4 Proper Subset: X ⊂ Y or proper _subset(X,Y) 52

2.6.5 Proper Superset: X ⊃ Y or proper _superset(X,Y) 53

2.6.6 Subset: X ⊆ Y or subset(X,Y) 53

2.6.7 Superset: X ⊇ Y or superset(X,Y) 53

2.7 Relational Functions 54

2.7.1 Interval Order Relations 54

2.7.2 Set Relational Functions 58

2.7.3 Certainly Relational Functions 60

2.7.4 Possibly Relational Functions 61

2.8 Input and Output 62

2.8.1 Input 62

2.8.2 Single-Number Output 63

2.8.3 Single-Number Input/Output and Base Conversions 65

2.9 Mathematical Functions 66

2.9.1 Inverse Tangent Function atan2(Y,X) 66

2.9.2 Maximum: maximum(X1,X2) 69

2.9.3 Minimum: minimum(X1,X2) 69

2.9.4 Functions That Accept Interval Arguments 70

2.10 Interval Types and the Standard Template Library 74

2.11 References 76

Glossary 77

Index 85
Contents vii

viii C++ Interval Arithmetic Programming Reference • July 2001

Tables

TABLE 2-1 Font Conventions 29

TABLE 2-2 Operators and Functions 40

TABLE 2-3 interval Relational Functions and Operators 41

TABLE 2-4 Containment Set for Addition: x + y 43

TABLE 2-5 Containment Set for Subtraction: x – y 43

TABLE 2-6 Containment Set for Multiplication: x × y 44

TABLE 2-7 Containment Set for Division: x ÷ y 44

TABLE 2-8 exp(y(ln(x))) 46

TABLE 2-9 Interval-Specific Functions 47

TABLE 2-10 Operational Definitions of Interval Order Relations 58

TABLE 2-11 atan2 Indeterminate Forms 67

TABLE 2-12 Tests and Arguments of the Floating-Point atan2 Function 69

TABLE 2-13 Tabulated Properties of Each interval Function 70

TABLE 2-14 interval Constructor 70

TABLE 2-15 interval Arithmetic Functions 71

TABLE 2-16 Other interval Mathematical Functions 71

TABLE 2-17 interval Trigonometric Functions 72

TABLE 2-18 interval -Specific Functions 73
ix

x C++ Interval Arithmetic Programming Reference • July 2001

Code Examples

CODE EXAMPLE 1-1 Hello Interval World 16

CODE EXAMPLE 1-2 Hello Interval World With interval Variables 17

CODE EXAMPLE 1-3 Interval Input/Output 19

CODE EXAMPLE 1-4 [inf, sup] Interval Output 21

CODE EXAMPLE 1-5 Single-Number Output 22

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion 23

CODE EXAMPLE 1-7 Simple interval Expression Example 24

CODE EXAMPLE 1-8 interval -Specific Functions 25

CODE EXAMPLE 1-9 Interval Versions of Mathematical Functions 26

CODE EXAMPLE 2-1 Valid and Invalid interval External Representations 31

CODE EXAMPLE 2-2 Efficient Use of the String-to-Interval Constructor 32

CODE EXAMPLE 2-3 interval Constructor With Floating-Point Arguments 35

CODE EXAMPLE 2-4 Using the interval_hull Function With Interval Constructor 36

CODE EXAMPLE 2-5 interval Conversion 37

CODE EXAMPLE 2-6 Creating a Narrow Interval That Contains a Given Real Number 38

CODE EXAMPLE 2-7 interval(NaN) 39

CODE EXAMPLE 2-8 Set Operators 48

CODE EXAMPLE 2-9 Set-Equality Test 55

CODE EXAMPLE 2-10 Interval Relational Functions 55

CODE EXAMPLE 2-11 Single-Number Output Examples 62
xi

CODE EXAMPLE 2-12 Single-Number [inf, sup]-style Output 64

CODE EXAMPLE 2-13 ndigits 65

CODE EXAMPLE 2-14 atan2 Indeterminate Forms 67

CODE EXAMPLE 2-15 Example of Using an Interval Type as a Template Argument for STL Classes 74

CODE EXAMPLE 2-16 >> Incorrectly Interpreted as the Right Shift Operator 75
xii C++ Interval Arithmetic Programming Reference • July 2001

Before You Begin

This manual documents the C++ interface to the C++ interval arithmetic library

provided with the Sun WorkShop™ 6 update 2 C++ compilers.

Who Should Use This Book

This is a reference manual intended for programmers with a working knowledge of

the C++ language, the Solaris™ operating environment, and UNIX commands.

How This Book Is Organized

This book contains the following chapters:

Chapter 1, “Using the Interval Arithmetic Library,” describes the C++ interval

arithmetic support goals and provides code samples that interval programmers can

use to quickly learn more about the C++ interval features. This chapter contains the

essential information to get started writing interval code using C++.

Chapter 2, “C++ Interval Arithmetic Library Reference,” is a complete description of

the C++ interval arithmetic library interface.

“Glossary” contains definitions of interval terms.
1

What Is Not in This Book

This book is not an introduction to intervals and does not contain derivations of the

interval innovations included in the interval arithmetic C++ library. For a list of

sources containing introductory interval information, see the Interval Arithmetic

Readme.

Related Interval References

The interval literature is large and growing. Interval applications exist in various

substantive fields. However, most interval books and journal articles either contain

these algorithms, or are written for interval analysts who are developing new

interval algorithms. There is not yet a book titled “Introduction to Intervals.”

The Sun WorkShop 6 C++ compiler is not the only source of C++ support for

intervals. Readers interested in other well known sources can refer to the following

books:

■ R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, M. Rauch, C-XSC Class Library for
Extended Scientific Computing. Springer, 1993.

■ R. Hammer, M. Hocks, U. Kulisch, D. Ratz, Numerical Toolbox for Verified
Computing I, Basic Numerical Problems. Springer, 1993.

For a list of technical reports that establish the foundation for the interval

innovations implemented in class interval , see “References” on page 76. See the

Interval Arithmetic Readme for the location of the online versions of these

references.
2 C++ Interval Arithmetic Programming Reference • July 2001

Online Resources

Additional interval information is available at various web sites and by subscribing

to email lists. For a list of online resources, refer to the Interval Arithmetic Readme.

Web Sites

A detailed bibliography and interval FAQ can be obtained online at the URLs listed

in the Interval Arithmetic Readme.

Email

To discuss interval arithmetic issues or ask questions about using interval arithmetic,

a mailing list has been constructed. Anyone can send questions to this list. Refer to

the Interval Arithmetic Readme for instructions on how to subscribe to this mailing

list.

To report a suspected interval error, send email to the following address:

sun-dp-comments@Sun.COM

Include the following text in the Subject line of the email message:

WORKSHOP "6.0 mm/ dd/ yy" Interval

where mm/dd/yy is the month, day, and year of the message.

Code Examples

All code examples in this book are contained in the following directory:

http://www.sun.com/forte/cplusplus/interval

The name of each file is ce n-m.cc , where n is the chapter in which the example

occurs and m is the number of the example. Additional interval examples are also

provided in this directory.
Before You Begin 3

Typographic Conventions

Note – Examples use math% as the system prompt.

Typeface or
Symbol Meaning Example

AaBbCc123 Code samples, the

names of commands,

files, and directories;

on-screen computer

output

interval<double>("[4, 5]"))

AaBbCc123 What you type,

contrasted with on-

screen computer output

math % CC -xia test.cc
math% a.out
x = [2.0,3.0]

^c Press the Control and c

keys to terminate an

application

a,b =? ^c

AaBbCc123 Placeholders for

interval language

elements

The interval affirmative order relational

operators op ∈ {lt , le , eq , ge , gt } are

equivalent to the mathematical operators

.

AaBbCc123 Variables used in

equations, book titles,

new words or terms, or

words to be

emphasized

The C++ code equivalent of is

intersect(X,Y)

AaBbCc123 Command-line

placeholder:

replace with a real

name or value

To invoke CCwith class interval support,

type

math% CC -xia source_file.cc

op >,≥,=,≤,<{ }∈

X Y∩
4 C++ Interval Arithmetic Programming Reference • July 2001

Shell Prompts

Supported Platforms

This Sun WorkShop™ interval arithmetic release supports versions 2.6, 7, and 8 of the

Solaris™ SPARC™ Platform Edition operating environment.

Accessing Sun WorkShop Development

Tools and Man Pages

The Sun WorkShop product components and man pages are not installed into the

standard /usr/bin/ and /usr/share/man directories. To access the Sun

WorkShop compilers and tools, you must have the Sun WorkShop component

directory in your PATHenvironment variable. To access the Sun WorkShop man

pages, you must have the Sun WorkShop man page directory in your MANPATH
environment variable.

For more information about the PATHvariable, see the csh (1), sh (1), and ksh (1)

man pages. For more information about the MANPATHvariable, see the man(1) man

page. For more information about setting your PATHand MANPATHvariables to

access this release, see the Sun WorkShop 6 update 2 Installation Guide or your system

administrator.

Shell Prompt

C shell %

Bourne shell and Korn shell $

C shell, Bourne shell, and Korn shell superuser #
Before You Begin 5

Note – The information in this section assumes that your Sun WorkShop 6 update 2

products are installed in the /opt directory. If your product software is not installed

in the /opt directory, ask your system administrator for the equivalent path on your

system.

Accessing Sun WorkShop Compilers and Tools

Use the steps below to determine whether you need to change your PATHvariable to

access the Sun WorkShop compilers and tools.

To Determine If You Need to Set Your PATHEnvironment
Variable

1. Display the current value of the PATHvariable by typing:

2. Review the output for a string of paths containing /opt/SUNWspro/bin/ .

If you find the path, your PATHvariable is already set to access Sun WorkShop

development tools. If you do not find the path, set your PATHenvironment variable

by following the instructions in the next section.

To Set Your PATHEnvironment Variable to Enable Access to
Sun WorkShop Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATHenvironment variable.

/opt/SUNWspro/bin

Accessing Sun WorkShop Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the Sun WorkShop man pages.

% echo $PATH
6 C++ Interval Arithmetic Programming Reference • July 2001

To Determine If You Need to Set Your MANPATHEnvironment
Variable

1. Request the workshop man page by typing:

2. Review the output, if any.

If the workshop (1) man page cannot be found or if the man page displayed is not

for the current version of the software installed, follow the instructions in the next

section for setting your MANPATHenvironment variable.

To Set Your MANPATHEnvironment Variable to Enable Access
to Sun WorkShop Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATHenvironment variable.

/opt/SUNWspro/man

Accessing Sun WorkShop

Documentation

You can access Sun WorkShop product documentation at the following locations:

■ The product documentation is available from the documentation index
installed with the product on your local system or network.

Point your Netscape™ Communicator 4.0 or compatible Netscape version browser

to the following file:

/opt/SUNWspro/docs/index.html

If your product software is not installed in the /opt directory, ask your system

administrator for the equivalent path on your system.

% man workshop
Before You Begin 7

■ Manuals are available from the docs.sun.comsm Web site.

The docs.sun.com Web site (http://docs.sun.com) enables you to read,

print, and buy Sun Microsystems manuals through the Internet. If you cannot find

a manual, see the documentation index installed with the product on your local

system or network.

Accessing Related Documentation

The following table describes related documentation that is available through the

docs.sun.com Web site.

Ordering Sun Documentation

You can order product documentation directly from Sun through the docs.sun.com
Web site or from Fatbrain.com, an Internet bookstore. You can find the Sun

Documentation Center on Fatbrain.com at the following URL:

http://www.fatbrain.com/documentation/sun

Document Collection Document Title Description

Numerical Computation

Guide Collection

Numerical Computation
Guide

Describes issues regarding the

numerical accuracy of floating-

point computations.

Solaris 8 Reference Manual

Collection

See the titles of man page

sections.

Provides information about the

Solaris operating environment.

Solaris 8 Software

Developer Collection

Linker and Libraries Guide Describes the operations of the

Solaris link-editor and runtime

linker.

Solaris 8 Software

Developer Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris

threads APIs, programming

with synchronization objects,

compiling multithreaded

programs, and finding tools for

multithreaded programs.
8 C++ Interval Arithmetic Programming Reference • July 2001

Sending Your Comments

Sun is interested in improving its documentation and welcomes your comments and

suggestions. Email your comments to Sun at this address:

docfeedback@sun.com
Before You Begin 9

10 C++ Interval Arithmetic Programming Reference • July 2001

CHAPTER 1

Using the Interval Arithmetic
Library

1.1 What Is Interval Arithmetic?
Interval arithmetic is a system for computing with intervals of numbers. Because

interval arithmetic always produces intervals that contain the set of all possible

result values, interval algorithms have been developed to perform surprisingly

difficult computations. For more information on interval applications, see the

Interval Arithmetic Readme.

1.2 C++ Interval Support Goal:
Implementation Quality
The goal of interval support in C++ is to stimulate development of commercial

interval solver libraries and applications by providing program developers with:

■ Quality interval code

■ Narrow-width interval results

■ Rapidly executing interval code

■ An easy-to-use software development environment

Support and features are components of implementation quality. Not all possible

quality of implementation features have been implemented. Throughout this book,

various unimplemented quality of implementation opportunities are described.

Additional suggestions from users are welcome.
11

1.2.1 Quality Interval Code

As a consequence of evaluating any interval expression, a valid interval-supporting

compiler must produce an interval that contains the set of all possible results. The

set of all possible results is called the containment set (cset) of the given expression.

The requirement to enclose an expression’s cset is the containment constraint of

interval arithmetic. The failure to satisfy the containment constraint is a containment

failure. A silent containment failure (with no warning or documentation) is a fatal

error in any interval computing system. By satisfying this single constraint, intervals

provide otherwise unprecedented computing quality.

Given the containment constraint is satisfied, implementation quality is determined

by the location of a point in the two-dimensional plane whose axes are runtime and

interval width. On both axes, small is better. How to trade runtime for interval width

depends on the application. Both runtime and interval width are obvious measures

of interval-system quality. Because interval width and runtime are always available,

measuring the accuracy of both interval algorithms and implementation systems is

no more difficult than measuring their speed.

The Sun WorkShop 6 tools for performance profiling can be used to tune interval

programs. However, in C++, no interval-specific tools exist to help isolate where an

algorithm may gain unnecessary interval width. Quality of implementation

opportunities include adding additional interval-specific code development and

debugging tools.

1.2.2 Narrow-Width Interval Results

All the normal language and compiler quality of implementation opportunities exist

for intervals, including rapid execution and ease of use.

Valid interval implementation systems include a new additional quality of

implementation opportunity: Minimize the width of computed intervals while

always satisfying the containment constraint.

If an interval’s width is as narrow as possible, it is said to be sharp. For a given

floating-point precision, an interval result is sharp if its width is as narrow as

possible.

The following statements apply to the width of intervals produced by the interval
class:

■ Individual intervals are sharp approximations of their external representation.

■ Individual interval arithmetic functions produce sharp results.

■ Mathematical functions usually produce sharp results.
12 C++ Interval Arithmetic Programming Reference • July 2001

1.2.3 Rapidly Executing Interval Code

By providing compiler optimization and hardware instruction support, interval
operations are not necessarily slower than their floating-point counterparts. The

following can be said about the speed of interval operators and mathematical

functions:

■ Arithmetic operations are reasonably fast.

■ The speed of interval<double> mathematical functions is generally less than

half the speed of their double counterparts. interval <float> math functions

are provided, but are not tuned for speed (unlike their interval <double>
counterparts). The interval<long double> mathematical functions are not

provided in this release. However, other interval<long double> functions are

supported.

1.2.4 Easy-to-Use Development Environment

The C++ interval class facilitates interval code development, testing, and

execution.

Sun WorkShop 6 C++ includes the following interval extensions:

■ interval template specializations for intervals using float , double , and long
double scalar types.

■ interval arithmetic operations and mathematical functions that form a closed

mathematical system. (This means that valid results are produced for any possible

operator-operand combination, including division by zero and other

indeterminate forms involving zero and infinities.)

■ Three types of interval relational functions:

■ Certainly

■ Possibly

■ Set

■ interval -specific functions, such as intersect and interval_hull.

■ interval -specific functions, such as inf , sup , and wid.

■ interval input/output, including single-number input/output.

For examples and more information on these and other interval functions, see

CODE EXAMPLE 2-8 on page 48 through CODE EXAMPLE 2-10 on page 55 and

Section 2.9.4 “Functions That Accept Interval Arguments” on page 70.

Chapter 2 contains detailed descriptions of these and other interval features.
Chapter 1 Using the Interval Arithmetic Library 13

1.2.5 The C++ Interval Class Compilation Interface

The compilation interface consists of the following:

■ A new value, interval , for the -library flag, which expands to the

appropriate libraries.

■ A new value, interval , for the -staticlib flag, which at present is ignored

because only static libraries are currently supported.

■ A new flag, -xia , which expands to -fsimple=0 -ftrap=%none -fns=no
-library=interva l. This flag is the same flag that is used with the Fortran

compilers, though the expansion is different.

To use the C++ interval arithmetic features, add the following header file to the code.

#include <suninterval.h>

An example of compiling code using the -xia command-line option is shown here.

The C++ interval library supports the following common C++ compilation modes:

■ Compatibility mode (ARM) using -compat
■ Standard mode (ISO) with the standard library, which is the default

■ Standard mode with the traditional iostream library (-library=iostream)

See the C++ Migration Guide and the C++ User's Guide for more information on these

modes.

The following sections describe the ways that these compilation modes affect

compilation of applications using the interval library.

1.2.5.1 namespace SUNW_interval

In standard mode only, all interval types and symbols are defined within the

namespace SUNW_interval . To write applications that compile in both standard

mode and compatibility mode, use the following code.

math% CC -o filename -xia filename.cc

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif
14 C++ Interval Arithmetic Programming Reference • July 2001

1.2.5.2 Boolean Return Values

Some interval functions return boolean values. Because compatibility mode does not

support boolean types by default, these functions are defined returning a type

interval_bool , which is a typedef to an int (compatibility mode) or a bool
(standard mode). Client code should use whatever type appropriate for boolean

values and rely on the appropriate conversions from interval_bool to the client’s

boolean type. The library does not support explicit use of -features=bool or

-features=no%bool .

1.2.5.3 Input and Output

The interval library requires the I/O mechanisms supplied in one of the three

compilation modes listed in Section 1.2.5 “The C++ Interval Class Compilation

Interface” on page 14. In particular, the flag -library=iostream must be specified

on all compile and link commands if the application is using the standard mode

with the traditional iostream library.

1.3 Writing Interval Code for C++
The examples in this section are designed to help new interval programmers to

understand the basics and to quickly begin writing useful interval code. Modifying

and experimenting with the examples is strongly recommended.
Chapter 1 Using the Interval Arithmetic Library 15

1.3.1 Hello Interval World

CODE EXAMPLE 1-1 is the interval equivalent of “hello world.”

CODE EXAMPLE 1-1 uses standard output streams to print the labeled sum of the

intervals [2, 3] and [4, 5].

1.3.2 interval External Representations

The integer and floating-point numbers that can be represented in computers are

referred to as internal machine representable numbers. These numbers are a subset

of the entire set of extended (including -∞ and +∞) real numbers. To make the

distinction, machine representable numbers are referred to as internal and any

number as external. Let x be an external (decimal) number or an interval endpoint

that can be read or written in C++. Such a number can be used to represent either an

external interval or an endpoint. There are three displayable forms of an external

interval:

■ [X_inf, X_sup] represents the mathematical interval

■ [X] represents the degenerate mathematical interval , or [x]

■ X represents the non-degenerate mathematical interval [x] + [-1,+1]uld (unit in the

last digit). This form is the single-number representation, in which the last

decimal digit is used to construct an interval. See Section 1.3.4 “interval
Input/Output” on page 18 and Section 2.8.2 “Single-Number Output” on page 63.

CODE EXAMPLE 1-1 Hello Interval World

math% cat ce1-1.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {

cout <<"[2,3]+[4,5]="
 << (interval<double>("[2,3]") +
 interval<double>("[4,5]"));
 cout << endl;
}

math% CC -xia -o ce1-1 ce1-1.cc
math% ce1-1
[2,3]+[4,5]=[0.6000000000000000E+001,0.8000000000000000E+001]

x x[,]

x x[,]
16 C++ Interval Arithmetic Programming Reference • July 2001

In this form, trailing zeros are significant. Thus 0.10 represents interval

[0.09, 0.11] , 100E-1 represents interval [9.9, 10.1] , and 0.10000000
represents the interval [0.099999999, 0.100000001] .

A positive or negative infinite interval endpoint is input/output as a case-insensitive

string inf or infinity prefixed with a minus sign or an optional plus sign.

The empty interval is input/output as the case-insensitive string empty enclosed in

square brackets, [...] . The string, "empty", can be preceded or followed by blank

spaces.

See Section 2.4.1 “Arithmetic Operators +, –, * , / ” on page 41, for more details.

Note – If an invalid interval such as [2,1] is converted to an internal interval,

[-inf, inf] is stored internally.

1.3.3 Interval Declaration and Initialization

The interval declaration statement performs the same functions for interval
data items as the double and int declarations do for their respective data items.

CODE EXAMPLE 1-2 uses interval variables and initialization to perform the same

operation as CODE EXAMPLE 1-1.

CODE EXAMPLE 1-2 Hello Interval World With interval Variables

math% cat ce1-2.cc

#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {

 interval<double> X("[2,3]");
 interval<double> Y("3"); // interval [2,4] is represented
 cout <<"[2,3]+[2,4]=" << X + Y;
 cout << endl;
}

math% CC -xia -o ce1-2 ce1-2.cc
math% ce1-2
[2,3]+[2,4]=[0.4000000000000000E+001,0.7000000000000000E+001]
Chapter 1 Using the Interval Arithmetic Library 17

Variables X and Y are declared to be of type interval<double> variables and are

initialized to [2, 3] and [2, 4], respectively. The standard output stream is used to

print the labeled interval sum of X and Y.

Note – To facilitate code-example readability, all interval variables are shown as

uppercase characters. Interval variables can be uppercase or lowercase in code.

1.3.4 interval Input/Output

Full support for reading and writing intervals is provided. Because reading and

interactively entering interval data can be tedious, a single-number interval format is

introduced. The single-number convention is that any number not contained in

brackets is interpreted as an interval whose lower and upper bounds are constructed

by subtracting and adding 1 unit to the last displayed digit.

Thus

2.345 = [2.344, 2.346],

2.34500 = [2.34499, 2.34501],

and

23 = [22, 24].

Symbolically,

[2.34499, 2.34501] = 2.34500 + [-1, +1]uld

where [-1, +1]uld means that the interval [-1, +1] is added to the last digit of the

preceding number. The subscript, uld, is a mnemonic for “unit in the last digit.”

To represent a degenerate interval, a single number can be enclosed in square

brackets. For example,

[2.345] = [2.345, 2.345] = 2.345000000000.....

This convention is used both for input and constructing intervals out of an external

character string representation. Thus, type [0.1] to indicate the input value is an

exact decimal number, even though 0.1 is not machine representable.

During input to a program, [0.1,0.1] = [0.1] represents the point, 0.1, while using

single-number input/output, 0.1 represents the interval

0.1 + [-1, +1]uld = [0, 0.2].
18 C++ Interval Arithmetic Programming Reference • July 2001

The input conversion process constructs a sharp interval that contains the input

decimal value. If the value is machine representable, the internal machine

approximation is degenerate. If the value is not machine representable, an interval

having width of 1-ulp (unit-in-the-last-place of the mantissa) is constructed.

Note – A uld and an ulp are different. A uld is a unit in the last displayed decimal

digit of an external number. An ulp is the smallest possible increment or decrement

that can be made to an internal machine number.

The simplest way to read and print interval data items is with standard stream

input and output.

CODE EXAMPLE 1-3 is a simple tool to help users become familiar with interval

arithmetic and single-number interval input/output using streams.

Note – The interval containment constraint requires that directed rounding be used

during both input and output. With single-number input followed immediately by

single-number output, a decimal digit of accuracy can appear to be lost. In fact, the

width of the input interval is increased by at most 1-ulp, when the input value is not

machine representable. See Section 1.3.5 “Single-Number Input/Output” on page 21

and CODE EXAMPLE 1-6 on page 23.

CODE EXAMPLE 1-3 Interval Input/Output

math% cat ce1-3.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X, Y;
 cout << "Press Control/C to terminate!"<< endl;
 cout <<" X,Y=?";
 cin >>X >>Y;
Chapter 1 Using the Interval Arithmetic Library 19

 for (;;){
cout <<endl <<"For X =" <<X <<endl<<", and Y=" <<Y <<endl;

 cout <<"X+Y=" << (X+Y) <<endl;

 cout <<"X-Y=" << (X-Y) <<endl;

 cout <<"X*Y=" << (X*Y) <<endl;

 cout <<"X/Y=" << (X/Y) <<endl;

 cout <<"pow(X,Y)=" << pow(X,Y) <<endl;

 cout <<" X,Y=?";

 cin >>X>>Y;
 }
}

math% CC ce1-3.cc -xia -o ce1-3
math% ce1-3
Press Control/C to terminate!
 X,Y=? [1,2][3,4]
For X =[0.1000000000000000E+001,0.2000000000000000E+001]
, and Y=[0.3000000000000000E+001,0.4000000000000000E+001]
X+Y=[0.4000000000000000E+001,0.6000000000000000E+001]
X-Y=[-.3000000000000000E+001,-.1000000000000000E+001]
X*Y=[0.3000000000000000E+001,0.8000000000000000E+001]
X/Y=[0.2500000000000000E+000,0.6666666666666668E+000]
pow(X,Y)=[0.1000000000000000E+001,0.1600000000000000E+002]
 X,Y=? [1,2] -inf
For X =[0.1000000000000000E+001,0.2000000000000000E+001]
, and Y=[-Infinity,-.1797693134862315E+309]
X+Y=[-Infinity,-.1797693134862315E+309]
X-Y=[0.1797693134862315E+309, Infinity]
X*Y=[-Infinity,-.1797693134862315E+309]
X/Y=[-.1112536929253602E-307,0.0000000000000000E+000]
pow(X,Y)=[0.0000000000000000E+000, Infinity]
 X,Y=? ^c

CODE EXAMPLE 1-3 Interval Input/Output (Continued)
20 C++ Interval Arithmetic Programming Reference • July 2001

1.3.5 Single-Number Input/Output

One of the most frustrating aspects of reading interval output is comparing interval

infima and suprema to count the number of digits that agree. For example,

CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5 shows the interval output of a program

that generates different random-width interval data.

Note – Only program output is shown in CODE EXAMPLE 1-4 and CODE EXAMPLE 1-5.

The code that generates the output is included with the examples located in the

http://sun.com/forte/cplusplus/interval directory.

CODE EXAMPLE 1-4 [inf, sup] Interval Output

math% a.out
Press Control/C to terminate!
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, and 1 - for single-number output: 5 4 0
x4=[0.14680409E-014,0.14976984E-014]
x4=[-.16254538E+039,-.15932665E+039]
x4=[0.14542469E-034, Infinity]
x4=[0.28025969E-044,0.28025970E-044]
x4=[-.54349165E-034,-.54338293E-034]
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, and 1 - for single-number output: 5 8 0
x8=[0.8671171289369087E+049,0.8671176773501073E+049]
x8=[-.2405178593145946E-124,-.2403657905522831E-124]
x8=[-.8474166174941822E-255,-.8474166169582288E-255]
x8=[0.1084305636204888E+266,0.1084327322534477E+266]
x8=[0.3117107160903294E-298,0.3117107180617612E-298]
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, and 1 - for single-number output: 5 16 0
x16=[0.4906993958993333845693908202556239E+0287,0.49069942693388
91161798364191839492E+0287]
x16=[0.5886876545195986380729926242360095E-0193,
0.5888054038254331412565683314827753E-0193]
x16=[0.5972006573269182437311161876692265E-0288,
0.5972006577046211033111133671758303E-0288]
x16=[0.0000000000000000000000000000000000E+0000,0.00000000000000
00000000000000000000E+0000]
x16=[-.9164380957381043754528730319237299E+0143,
-.9164322996929989196916190159965291E+0143]
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, an d 1 - for single-number output:<Control-C>
Chapter 1 Using the Interval Arithmetic Library 21

Compare the output readability in CODE EXAMPLE 1-4 with CODE EXAMPLE 1-5.

In the single-number display format, trailing zeros are significant. See Section 2.8

“Input and Output” on page 62 for more information.

CODE EXAMPLE 1-5 Single-Number Output

math% a.out
Press Control/C to terminate!
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, and 1 - for single-number output: 5 4 1
 0.15 E-014
 -0.16 E+039
[0.1454E-034, Infinity]
 0.2802E-044
 -0.5434E-034
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, and 1 - for single-number output: 5 8 1
 0.86711E+049
 -0.240 E-124
 -0.84741E-255
 0.10843E+266
 0.31171E-298
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, and 1 - for single-number output: 5 16 1
 0.4906994 E+287
 0.588 E-193
 0.597200657E-288
[0.000000000E+000]
 -0.91643 E+143
Enter number of intervals, 4 - for float, 8 - for double, or
16 - for long double, and 1 - for single-number output: ^c
22 C++ Interval Arithmetic Programming Reference • July 2001

Intervals can always be entered and displayed using the traditional [inf, sup] display

format. In addition, a single number in square brackets denotes a point. For

example, on input, [0.1] is interpreted as the number 1/10. To guarantee

containment, directed rounding is used to construct an internal approximation that

is known to contain the number 1/10.

CODE EXAMPLE 1-6 Character Input With Internal Data Conversion

math% cat ce1-6.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 char BUFFER[128];
 cout << "Press Control/C to terminate!"<< endl;
 cout << "X=?";
 cin >>BUFFER;
 for(;;) {
 interval<double> X(BUFFER);
 cout << endl << "Your input was:" <<BUFFER << endl;

cout << "Resulting stored interval is:" << endl << X << endl;
 cout << "Single number interval output is: ";
 single_number_output(X, cout);
 cout <<endl <<"X=?" ;
 cin >>BUFFER;
 }
}
math% CC -xia ce1-6.cc -o ce1-6
math% ce1-6
Press Control/C to terminate!
X=?1.37

Your input was:1.37
Resulting stored interval is:
[0.1359999999999999E+001,0.1380000000000001E+001]
Single number interval output is: 0.13 E+001
X=?1.444

Your input was:1.444
Resulting stored interval is:
[0.1442999999999999E+001,0.1445000000000001E+001]
Single number interval output is: 0.144 E+001
X=? ^c
Chapter 1 Using the Interval Arithmetic Library 23

CODE EXAMPLE 1-6 notes:

■ Single numbers in square brackets represent degenerate intervals.

■ When a non-machine representable number is read using single-number input,

conversion from decimal to binary (radix conversion) and the containment

constraint force the number’s interval width to be increased by 1-ulp (unit in the

last place of the mantissa). When this result is displayed using single-number

output, it can appear that a decimal digit of accuracy has been lost. This is not so.

To echo single-number interval inputs, use character input together with an

interval constructor with a character string argument, as shown in

CODE EXAMPLE 1-6 on page 23.

Note – The empty interval is supported in the interval class. The empty interval

can be entered as [empty] . Infinite interval endpoints are also supported, as

described in Section 1.3.2 “interval External Representations” on page 16.

1.3.6 Arithmetic Expressions

Writing arithmetic expressions that contain interval data items is simple and

straightforward. Except for interval -specific functions and constructors,

interval expressions look like floating-point arithmetic expressions, such as in

CODE EXAMPLE 1-7.

CODE EXAMPLE 1-7 Simple interval Expression Example

math% cat ce1-7.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X1("[0.1]");
 interval <double> N(3);
 interval <double> A (5.0);
 interval <double> X = X1 * A / N;
 cout << "[0.1]*[A]/[N]=" <<X <<endl;
}
math% CC -xia -o ce1-7 ce1-7.cc
math% ce1-7
[0.1]*[A]/[N]=[0.1666666666666666E+000,0.1666666666666668E+000]
24 C++ Interval Arithmetic Programming Reference • July 2001

Note – Not all mathematically equivalent interval expressions produce intervals

having the same width. Additionally, it is often not possible to compute a sharp

result by simply evaluating a single interval expression. In general, interval result

width depends on the value of interval arguments and the form of the expression.

1.3.7 interval -Specific Functions

A variety of interval -specific functions are provided. See Section 2.9.4 “Functions

That Accept Interval Arguments” on page 70. Use CODE EXAMPLE 1-8 to explore how

specific interval functions behave.

CODE EXAMPLE 1-8 interval -Specific Functions

math% cat ce1-8.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X;
 cout << "Press Control/C to terminate!"<< endl;
 cout <<"X=?";
 cin >>X;
 for(;;){
 cout <<endl << "For X =" <<X << endl;
 cout <<"mid(X)=" << (mid(X)) <<endl;
 cout <<"mig(X)=" << (mig(X)) <<endl;
 cout <<"mag(X)=" << (mag(X)) <<endl;
 cout <<"wid(X)=" << (wid(X)) <<endl;
 cout <<"X=?";
 cin >>X;
 }
}

Chapter 1 Using the Interval Arithmetic Library 25

1.3.8 Interval Versions of Standard Functions

Use CODE EXAMPLE 1-9 to explore how some standard mathematical functions

behave.

math% CC -xia -o ce1-8 ce1-8.cc
math% ce1-8
Press Control/C to terminate!
X=? [1.23456,1.234567890]
For X =[0.1234559999999999E+001,0.1234567890000001E+001]
mid(X)=1.23456
mig(X)=1.23456
mag(X)=1.23457
wid(X)=7.89e-06
X=? [1,10]
For X =[0.1000000000000000E+001,0.1000000000000000E+002]
mid(X)=5.5
mig(X)=1
mag(X)=10
wid(X)=9
X=? ^c

CODE EXAMPLE 1-9 Interval Versions of Mathematical Functions

math% cat ce1-9.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X;
 cout << "Press Control/C to terminate!"<< endl;
 cout <<"X=?";
 cin >>X;

CODE EXAMPLE 1-8 interval -Specific Functions (Continued)
26 C++ Interval Arithmetic Programming Reference • July 2001

 for (;;) {
 cout <<endl << "For X =" <<X << endl;

 cout <<"abs(X)=" << (fabs(X)) <<endl;

 cout <<"log(X)=" << (log(X)) <<endl;

 cout <<"sqrt(X)=" << (sqrt(X)) <<endl;

 cout <<"sin(X)=" << (sin(X)) <<endl;

 cout <<"acos(X)=" << (acos(X)) <<endl;

 cout <<"X=?";
 cin >>X;
 }
}
math% CC -xia -o ce1-9 ce1-9.cc
math% ce1-9
Press Control/C to terminate!
X=? [1.1,1.2]
For X =[0.1099999999999999E+001,0.1200000000000001E+001]
abs(X)=[0.1099999999999999E+001,0.1200000000000001E+001]
log(X)=[0.9531017980432472E-001,0.1823215567939548E+000]
sqrt(X)=[0.1048808848170151E+001,0.1095445115010333E+001]
sin(X)=[0.8912073600614351E+000,0.9320390859672266E+000]
acos(X)=[EMPTY]
X=? [-0.5,0.5]
For X =[-.5000000000000000E+000,0.5000000000000000E+000]
abs(X)=[0.0000000000000000E+000,0.5000000000000000E+000]
log(X)=[-Infinity,-.6931471805599452E+000]
sqrt(X)=[0.0000000000000000E+000,0.7071067811865476E+000]
sin(X)=[-.4794255386042031E+000,0.4794255386042031E+000]
acos(X)=[0.1047197551196597E+001,0.2094395102393196E+001]
X=? ^c

CODE EXAMPLE 1-9 Interval Versions of Mathematical Functions (Continued)
Chapter 1 Using the Interval Arithmetic Library 27

1.4 Code Development Tools
Information on interval code development tools is available online. See the Interval

Arithmetic Readme for a list of interval web sites and other online resources.

To report a suspected interval error, send email to the following address:

sun-dp-comments@Sun.COM

Include the following text in the Subject line of the email message:

WORKSHOP "6.0 mm/ dd/ yy" Interval

where mm/dd/yy is the month, day, and year of the message.

1.4.1 Debugging Support

In Sun WorkShop 6, interval data types are supported by dbx to the following

extent:

■ The values of individual interval variables can be printed using the print
command.

■ The value of all interval variables can be printed using the dump command.

■ New values can be assigned to interval variables using the assign command.

■ All generic functionality that is not data type specific should work.

For additional details on dbx functionality, see Debugging a Program With dbx .
28 C++ Interval Arithmetic Programming Reference • July 2001

CHAPTER 2

C++ Interval Arithmetic Library
Reference

This chapter is a reference for the syntax and semantics of the interval arithmetic

library implemented in Sun WorkShop 6 update 2 C++. The sections can be read in

any order.

2.1 Character Set Notation
Throughout this document, unless explicitly stated otherwise, integer and floating-

point constants mean literal constants. Literal constants are represented using

strings, because class types do not support literal constants. Section 2.1.1 “String

Representation of an Interval Constant (SRIC)” on page 30.

TABLE 2-1 shows the character set notation used for code and mathematics.

Note – Pay close attention to font usage. Different fonts represent an interval’s

exact, external mathematical value and an interval’s machine-representable, internal

approximation.

TABLE 2-1 Font Conventions

Character Set Notation

C++ code interval<double> DX;

Input to programs and commands Enter X: ? [2.3,2.4]

Placeholders for constants in code [a, b]

Scalar mathematics x(a + b) = xa + xb

Interval mathematics X(A + B) XA + XB⊆
29

2.1.1 String Representation of an Interval Constant

(SRIC)

In C++, it is possible to define variables of a class type, but not literal constants. So

that a literal interval constant can be represented, the C++ interval class uses a string

to represent an interval constant. A string representation of an interval constant

(SRIC) is a character string containing one of the following:

■ A single integer or real decimal number enclosed in square brackets, "[3.5]" .

■ A pair of integer or real decimal numbers separated by a comma and enclosed in

square brackets, "[3.5 E-10, 3.6 E-10]" .

■ A single integer or decimal number. This form is the single-number

representation, in which the last decimal digit is used to construct an interval. See

Section 1.3.2 “interval External Representations” on page 16.

Quotation marks delimit the string. If a degenerate interval is not machine

representable, directed rounding is used to round the exact mathematical value to an

internal machine representable interval known to satisfy the containment constraint.

A SRIC, such as "[0.1]" or "[0.1,0.2]" , is associated with the two values: its

external value and its internal approximation. The numerical value of a SRIC is its

internal approximation. The external value of a SRIC is always explicitly labelled as

such, by using the notation ev(SRIC). For example, the SRIC "[1, 2]" and its

external value ev("[1, 2]") are both equal to the mathematical value [1, 2].

However, while ev("[0.1, 0.2]") = [0.1, 0.2], interval<double>("[0.1,
0.2]") is only an internal machine approximation containing [0.1, 0.2], because the

numbers 0.1 and 0.2 are not machine representable.

Like any mathematical constant, the external value of a SRIC is invariant.

Because intervals are opaque, there is no language requirement to use any particular

interval storage format to save the information needed to internally approximate an

interval. Functions are provided to access the infimum and supremum of an interval.

In a SRIC containing two interval endpoints, the first number is the infimum or

lower bound, and the second is the supremum or upper bound.

If a SRIC contains only one integer or real number in square brackets, the

represented interval is degenerate, with equal infimum and supremum. In this case,

an internal interval approximation is constructed that is guaranteed to contain the

SRIC’s single decimal external value. If a SRIC contains only one integer or real

number without square brackets, single number conversion is used. See Section 2.8.1

“Input” on page 62.

A valid interval must have an infimum that is less than or equal to its supremum.

Similarly, a SRIC must also have an infimum that is less than or equal to its

supremum. For example, the following code fragment must evaluate to true:

inf(interval<double>("[0.1]") <= sup(interval<double>("[0.1]"))
30 C++ Interval Arithmetic Programming Reference • July 2001

CODE EXAMPLE 2-1 contains examples of valid and invalid SRICs.

For additional information regarding SRICs, see the supplementary paper [4] cited

in Section 2.11 “References” on page 76.

CODE EXAMPLE 2-1 Valid and Invalid interval External Representations

math% cat ce2-1.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X1("[1,2]");
 interval <double> X2("[1]");
 interval <double> X3("1");
 interval <double> X4("[0.1]");
 interval <double> X5("0.1");
 interval <double> X6("0.10");
 interval <double> X7("0.100");
 interval <double> X8("[2,1]");
 cout << "X1=" << X1 << endl;
 cout << "X2=" << X2 << endl;
 cout << "X3=" << X3 << endl;
 cout << "X4=" << X4 << endl;
 cout << "X5=" << X5 << endl;
 cout << "X6=" << X6 << endl;
 cout << "X7=" << X7 << endl;
 cout << "X8=" << X8 << endl;
}
math% CC -xia -o ce2-1 ce2-1.cc
math% ce2-1
X1=[0.1000000000000000E+001,0.2000000000000000E+001]
X2=[0.1000000000000000E+001,0.1000000000000000E+001]
X3=[0.0000000000000000E+000,0.2000000000000000E+001]
X4=[0.9999999999999999E-001,0.1000000000000001E+000]
X5=[0.0000000000000000E+000,0.2000000000000001E+000]
X6=[0.8999999999999999E-001,0.1100000000000001E+000]
X7=[0.9899999999999999E-001,0.1010000000000001E+000]
X8=[-Infinity, Infinity]
Chapter 2 C++ Interval Arithmetic Library Reference 31

Constructing an interval approximation from a SRIC is an inefficient operation that

should be avoided, if possible. In CODE EXAMPLE 2-2, the interval<double>
constant Y is constructed only once at the start of the program, and then its internal

representation is used thereafter.

CODE EXAMPLE 2-2 Efficient Use of the String-to-Interval Constructor

math% cat ce2-2.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

const interval<double> Y("[0.1]");
const int limit = 100000;

int main()
{
 interval<double> RESULT(0.0);
 clock_t t1= clock();
 if(t1==clock_t(-1)){cerr<< "sorry, no clock\n"; exit(1);}

 for (int i = 0; i < limit; i++){
 RESULT += Y;
 }
 clock_t t2= clock();

if(t2==clock_t(-1)){cerr<< "sorry, clock overflow\n"; exit(2);}
 cout << "efficient loop took " <<
 double(t2-t1)/CLOCKS_PER_SEC << " seconds" << endl;
 cout << "result" << RESULT << endl ;
 t1= clock();

if(t1==clock_t(-1)){cerr<< "sorry, clock overflow\n"; exit(2);}
 for (int i = 0; i < limit; i++){
 RESULT += interval<double>("[0.1]");
 }
 t2= clock();

if(t2==clock_t(-1)){cerr<< "sorry, clock overflow\n"; exit(2);}
 cout << "inefficient loop took " <<
 double(t2-t1)/CLOCKS_PER_SEC << " seconds" << endl;
 cout << "result" << RESULT << endl ;
}

32 C++ Interval Arithmetic Programming Reference • July 2001

2.1.2 Internal Approximation

The internal approximation of a floating-point constant does not necessarily equal

the constant’s external value. For example, because the decimal number 0.1 is not a

member of the set of binary floating-point numbers, this value can only be

approximated by a binary floating-point number that is close to 0.1. For floating-point

data items, the approximation accuracy is unspecified in the C++ standard. For

interval data items, a pair of floating-point values is used that is known to contain

the set of mathematical values defined by the decimal numbers used to symbolically

represent an interval constant. For example, the mathematical interval [0.1, 0.2] is

represented by a string "[0.1,0.2]" .

Just as there is no C++ language requirement to accurately approximate floating-

point constants, there is also no language requirement to approximate an interval’s

external value with a narrow width interval internal representation. There is a

requirement for an interval internal representation to contain its external value.

ev(inf(interval<double>("[0.1,0.2]")))

inf(ev("[0.1,0.2]")) = inf([0.1, 0.2])

and

sup([0.1, 0.2]) = sup(ev("[0.1,0.2]"))

ev(sup(interval<double>("[0.1,0.2]")))

Note – The arguments of ev() are always code expressions that produce

mathematical values. The use of different fonts for code expressions and

mathematical values is designed to make this distinction clear.

C++ interval internal representations are sharp. This is a quality of implementation

feature.

math% CC -xia ce2-2.cc -o ce2-2
math% ce2-2
efficient loop took 0.16 seconds
result[0.9999999999947978E+004,0.1000000000003054E+005]
inefficient loop took 5.59 seconds
result[0.1999999999980245E+005,0.2000000000013270E+005]

CODE EXAMPLE 2-2 Efficient Use of the String-to-Interval Constructor (Continued)

≤

≤

Chapter 2 C++ Interval Arithmetic Library Reference 33

2.2 interval Constructor
The following interval constructors are supported:

The following interval constructors guarantee containment:

The argument interval is rounded outward, if necessary.

The interval constructor with non-interval arguments returns [-inf,inf] if either

the second argument is less then the first, or if either argument is not a mathematical

real number, such as when one or both arguments is a NaN.

Interval constructors with floating-point or integer arguments might not return an

interval that contains the external value of constant arguments.

explicit interval(const char*) ;
explicit interval(const interval<float>&) ;
explicit interval(const interval<double>&) ;
explicit interval(const interval<long double>&) ;
explicit interval(int) ;
explicit interval(long long) ;
explicit interval(float) ;
explicit interval(double) ;
explicit interval(long double) ;
interval(int, int) ;
interval(long long, long long) ;
interval(float, float) ;
interval(double, double) ;
interval(long double, long double) ;

interval(const char*) ;
interval(const interval<float>&) ;
interval(const interval<double>&)
interval(const interval<long double>&) ;
34 C++ Interval Arithmetic Programming Reference • July 2001

For example, use interval<double>("[1.1,1.3]") to sharply contain the

mathematical interval [1.1, 1.3]. However, interval<double>(1.1,1.3) might

not contain [1.1, 1.3], because the internal values of floating-point literal constants

are approximated with unknown accuracy.

The result value of an interval constructor is always a valid interval.

CODE EXAMPLE 2-3 interval Constructor With Floating-Point Arguments

math% cat ce2-3.cc
#include <limits.h>
#include <strings.h>
#include <sunmath.h>
#include <stack>
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main()
{
 //Compute 0.7-0.1-0.2-0.3-0.1 == 0.0

 interval<double> correct_result;
 const interval<double> x1("[0.1]"),
 x2("[0.2]"),x3("[0.3]"),x7("[0.7]");

 cout << "Exact result:" << 0.0 << endl ;

 cout << "Incorrect evaluation:" <<
interval<double>(0.7-0.1-0.2-0.3-0.1, 0.7-0.1-0.2-0.3-0.1) <<

 endl ;

 correct_result = x7-x1-x2-x3-x1;

 cout << "Correct evaluation:" << correct_result << endl ;
}
math% CC -xia -o ce2-3 ce2-3.cc
math% ce2-3.cc
Exact result:0
Incorrect evaluation:
[-.2775557561562892E-016,-.2775557561562891E-016]
Correct evaluation:
[-.1942890293094024E-015,0.1526556658859591E-015]
Chapter 2 C++ Interval Arithmetic Library Reference 35

The interval_hull function can be used with an interval constructor to construct

an interval containing two floating-point numbers, as shown in CODE EXAMPLE 2-4.

CODE EXAMPLE 2-4 Using the interval_hull Function With Interval Constructor

math% cat ce2-4.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <float> X;
 long double a,b;
 cout << "Press Control/C to terminate!"<< endl;
 cout <<" a,b =?";
 cin >>a >>b;
 for(;;){
 cout <<endl << "For a =" << a << ", and b =" <<b<< endl;
 X = interval <float>(
 interval_hull(interval<long double>(a),
 interval<long double>(b)));
 if(in(a,X) && in(b,X)){
 cout << "Check" << endl ;
 cout << "X=" << X << endl ;
 }
 cout <<" a,b =?";
 cin >>a >>b;
 }
}
math% CC -xia ce2-4.cc -o ce2-4
math% ce2-4
Press Control/C to terminate!
 a,b =? 1.0e+400 -0.1
For a =1e+400, and b =-0.1
Check
X=[-.10000001E+000, Infinity]
 a,b =? ^c
36 C++ Interval Arithmetic Programming Reference • July 2001

2.2.1 interval Constructor Examples

The three examples in this section illustrate how to use the interval constructor to

perform conversions from floating-point to interval -type data items.

CODE EXAMPLE 2-5 shows that floating-point expression arguments of the interval
constructor are evaluated using floating-point arithmetic.

CODE EXAMPLE 2-5 interval Conversion

math% cat ce2-5.cc

#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <float> X, Y;
 interval <double> DX, DY;
 float R = 0.1f, S = 0.2f, T = 0.3f;
 double R8 = 0.1, T1, T2;

 Y = interval <float>(R,R);
 X = interval <float>(0.1f); //note 1
 if (X == Y)
 cout <<"Check1"<< endl;
 X = interval <float>(0.1f, 0.1f);
 if (X == Y)
 cout <<"Check2"<< endl;
 T1 = R + S;
 T2 = T + R8;
 DY = interval <double>(T1, T2);

DX = interval <double>(double(R+S), double(T+R8)); //note 2
 if (DX == DY)
 cout <<"Check3"<< endl;
 DX = interval <double>(Y); //note 3
 if (ceq(DX,interval <double>(0.1f, 0.1f)))
 cout <<"Check4"<< endl;
}
math% CC -xia -o ce2-5 ce2-5.cc
math% ce2-5
Check1
Check2
Check3
Check4
Chapter 2 C++ Interval Arithmetic Library Reference 37

CODE EXAMPLE 2-5 notes:

■ Note 1. Interval X is assigned a degenerate interval with both endpoints equal to

the internal representation of the real constant 0.1.

■ Note 2. Interval DX is assigned an interval with left and right endpoints equal to

the result of floating-point expressions R+S and T+R8 respectively.

■ Note 3. Interval Y is converted to a containing interval<double> .

CODE EXAMPLE 2-6 shows how the interval constructor can be used to create the

smallest possible interval, Y, such that the endpoints of Y are not elements of a given

interval, X.

Given an interval X, a sharp interval Y satisfying the condition in_interior(X,Y)
is constructed. For information on the interior set relation, Section 2.6.3 “Interior:

in_interior(X,Y) ” on page 52.

CODE EXAMPLE 2-6 Creating a Narrow Interval That Contains a Given Real Number

math% cat ce2-6.cc
#include <suninterval.h>
#include <values.h>
#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X("[10.E-10,11.E-10]");
 interval <double> Y;
 Y = interval<double>(-MINDOUBLE, MINDOUBLE) + X;
 cout << "X is " <<
 ((!in_interior(X,Y))? "not": "")<< "in interior of Y" <<endl;
}
math% CC ce2-6.cc -o ce2-6 -xia
math% ce2-6
X is in interior of Y
38 C++ Interval Arithmetic Programming Reference • July 2001

CODE EXAMPLE 2-7 illustrates when the interval constructor returns the interval [-

inf , inf] and [max_float , inf].

CODE EXAMPLE 2-7 notes:

■ Note 1. Variable T is assigned a NaNvalue.

■ Note 2. Because one of the arguments of the interval constructor is a NaN, the

result is the interval [-inf, inf] .

■ Note 3. The interval [-inf, inf] is constructed instead of an invalid interval

[2,1].

■ Note 4. The interval [max_float , inf] is constructed, which contains +inf , the

value returned by IEEE arithmetic for 1./R . It is assumed that +inf represents

+infinity . See the supplementary paper [8] cited in Section 2.11 “References” on

page 76 for a discussion of the chosen intervals to represent internally.

CODE EXAMPLE 2-7 interval (NaN)

math% cat ce2-7.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> DX;
 float R=0.0, S=0.0, T;
 T = R/S; //note 1
 cout<< T <<endl;
 cout<< interval<double>(T,S)<<endl; //note 2
 cout<< interval<double>(T,T)<<endl;
 cout<< interval<double>(2.,1.)<<endl; //note 3
 cout<< interval<double>(1./R)<<endl; //note 4
}
math% CC -xia -o ce2-7 ce2-7.cc
math% ce2-7
NaN
[-Infinity, Infinity]
[-Infinity, Infinity]
[-Infinity, Infinity]
[0.1797693134862315E+309, Infinity]
Chapter 2 C++ Interval Arithmetic Library Reference 39

2.3 interval Arithmetic Expressions
interval arithmetic expressions are constructed from the same arithmetic operators

as other numerical data types. The fundamental difference between interval and

non-interval (point) expressions is that the result of any possible interval
expression is a valid interval that satisfies the containment constraint of interval

arithmetic. In contrast, point expression results can be any approximate value.

2.4 Operators and Functions
TABLE 2-2 lists the operators and functions that can be used with intervals.

InTABLE 2-2, X and Y are intervals.

TABLE 2-2 Operators and Functions

Operator Operation Expression Meaning

* Multiplication X*Y Multiply X and Y

/ Division X/Y Divide X by Y

+ Addition X+Y Add X and Y

+ Identity +X Same as X (without a sign)

- Subtraction X-Y Subtract Y from X

- Numeric Negation -X Negate X

Function Meaning

interval_hull(X,Y) Interval hull of X and Y

intersect(X,Y) Intersect X and Y

pow(X,Y) Power function
40 C++ Interval Arithmetic Programming Reference • July 2001

Some interval -specific functions have no point analogs. These can be grouped into

three categories: set, certainly, and possibly, as shown in TABLE 2-3. A number of

unique set-operators have no certainly or possibly analogs.

Except for the in function, interval relational functions can only be applied to two

interval operands with the same type.

The first argument of the in function is of any integer or floating-point type. The

second argument can have any interval type.

All the interval relational functions and operators return an interval_bool -type

result.

2.4.1 Arithmetic Operators +, –, * , /

Formulas for computing the endpoints of interval arithmetic operations on finite

floating-point intervals are motivated by the requirement to produce the narrowest

interval that is guaranteed to contain the set of all possible point results. Ramon

Moore independently developed these formulas and more importantly, was the first

to develop the analysis needed to apply interval arithmetic. For more information,

see Interval Analysis by R. Moore (Prentice-Hall, 1966).

TABLE 2-3 interval Relational Functions and Operators

Operators == !=

Set Relational
Functions

superset(X,Y) proper_superset(X,Y)

subset(X,Y) proper_subset(X,Y)

in_interior(X,Y) disjoint(X,Y)

in(r,Y)

seq(X,Y) sne(X,Y) slt(X,Y) sle(X,Y) sgt(X,Y) sge(X,Y)

Certainly Relational
Functions

ceq(X,Y) cne(X,Y) clt(X,Y) cle(X,Y) cgt(X,Y) cge(X,Y)

Possibly Relational
Functions

peq(X,Y) pne(X,Y) plt(X,Y) ple(X,Y) pgt(X,Y) pge(X,Y)
Chapter 2 C++ Interval Arithmetic Library Reference 41

The set of all possible values was originally defined by performing the operation in

question on any element of the operand intervals. Therefore, given finite intervals,

[a, b] and [c, d], with ,

,

with division by zero being excluded. Implementation formulas, or their logical

equivalent, are:

Directed rounding is used when computing with finite precision arithmetic to

guarantee the set of all possible values is contained in the resulting interval.

The set of values that any interval result must contain is called the containment set

(cset) of the operation or expression that produces the result.

To include extended intervals (with infinite endpoints) and division by zero, csets

can only indirectly depend on the value of arithmetic operations on real operands.

For extended intervals, csets are required for operations on points that are normally

undefined. Undefined operations include the indeterminate forms:

.

The containment-set closure identity solves the problem of identifying the value of

containment sets of expressions at singular or indeterminate points. The identity

states that containment sets are function closures. The closure of a function at a point

on the boundary of its domain includes all limit or accumulation points. For details,

see the Glossary and the supplementary papers [1], [3], [10], and [11] cited in

Section 2.11 “References” on page 76.

The following is an intuitive way to justify the values included in an expression’s

cset. Consider the function

.

The question is: what is the cset of h(x0), for x0 = 0 ? To answer this question,

consider the function

.

op {+, –, , }÷×∈

a b,[] op c d,[] x yop x a b,[]∈ y c d,[]∈and{ }⊇

a b,[] c d,[]+ a c+ b d+[,]=

a b,[] c d,[]– a d– b c–[,]=

a b,[] c d,[]× min a c a d b c b d×,×,×,×() max a c a d b c b d×,×,×,×()[,]=

a b,[] c d,[]⁄ min
a
c
--- a

d
--- b

c
--- b

d
---, , , 

  max
a
c
--- a

d
--- b

c
--- b

d
---, , , 

 , , if 0 c d,[]∉=

1 0÷ 0 ∞× 0 0÷ and ∞ ∞÷, , ,

h x() 1
x
---=

f x() x
x 1+
------------=
42 C++ Interval Arithmetic Programming Reference • July 2001

Clearly, f(x0) = 0, for x0 = 0. But, what about

or

?

The function g(x0) is undefined for x0 = 0, because h(x0) is undefined. The cset of h(x0)

for x0 = 0 is the smallest set of values for which g(x0) = f(x0). Moreover, this must be

true for all composite functions of h. For example if

g’(y) = ,

then g(x) = g’(h(x)). In this case, it can be proved that the cset of h(x0) = if

x0 = 0, where denotes the set consisting of the two values , and .

Tables 2-4 through 2-7, contain the csets for the basic arithmetic operations. It is

convenient to adopt the notation that an expression denoted by f(x) simply means its

cset. Similarly, if

,

the containment set of f over the interval X, then hull(f(x)) is the sharp interval that

contains f(X).

TABLE 2-4 Containment Set for Addition:x + y

cset of x+y {-∞} {real: y0} {+∞}

{-∞} {-∞} {-∞}

{real: x0} {-∞} {x0 + y0} {+∞}

{+∞} {+∞} {+∞}

TABLE 2-5 Containment Set for Subtraction:x – y

cset of x – y {-∞} {real: y0} {+∞}

{-∞} {-∞} {-∞}

{real: x0} {+∞} {x0 – y0} {-∞}

{+∞} {+∞} {+∞}

g x() 1

1
1
x
--- 

 +

------------------=

g x() 1
1 h x()+
--------------------=

1
1 y+

∞– +∞,{ }
∞– +∞,{ } ∞– +∞

f X() f x()
x X∈
∪=

ℜ*

ℜ*

ℜ*

ℜ*
Chapter 2 C++ Interval Arithmetic Library Reference 43

All inputs in the tables are shown as sets. Results are shown as sets or intervals.

Customary notation, such as , , and

, is used, with the understanding that csets are implied when

needed. Results for general set (or interval) inputs are the union of the results of the

single-point results as they range over the input sets (or intervals).

In one case, division by zero, the result is not an interval, but the set, . In

this case, the narrowest interval in the current system that does not violate the

containment constraint of interval arithmetic is the interval .

Sign changes produce the expected results.

To incorporate these results into the formulas for computing interval endpoints, it is

only necessary to identify the desired endpoint, which is also encoded in the

rounding direction. Using to denote rounding down (towards -∞) and to denote

rounding up (towards +∞),

and .

and .

Similarly, because ,

and .

TABLE 2-6 Containment Set for Multiplication:x × y

cset of x × y {-∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{-∞} {+∞} {+∞} {-∞} {-∞}

{real: x0 < 0} {+∞} {x × y} {0} {x × y} {-∞}

{0} {0} {0} {0}

{real: x0 > 0} {-∞} x × y {0} x × y {+∞}

{+∞} {-∞} {-∞} {+∞} {+∞}

TABLE 2-7 Containment Set for Division:x ÷ y

cset of x ÷ y {-∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{-∞} [0, +∞] {+∞} {-∞, +∞} {-∞} [- ∞, 0]

{real: x0 ≠ 0} {0} {x ÷ y} {-∞, +∞} {x ÷ y} {0}

{0} {0} {0} {0} {0}

{+∞} [-∞, 0] {-∞} {-∞, +∞} {+∞} [0, +∞]

ℜ*

ℜ* ℜ*

ℜ*

ℜ*

∞–() +∞()+ ∞–= ∞–() y+ ∞–=
∞–() +∞()+ ℜ∗=

∞– +∞,{ }

∞– +∞,[] ℜ∗=

↓ ↑

↓ +∞() +∞()÷ 0= ↑ +∞() +∞()÷ +∞=

↓ 0 +∞()× -∞= ↑ 0 +∞()× +∞=

hull -∞ +∞,{ }() -∞ +∞,[]=

↓ x 0÷ ∞–= ↑ x 0÷ +∞=
44 C++ Interval Arithmetic Programming Reference • July 2001

Finally, the empty interval is represented in C++ by the character string [empty] and

has the same properties as the empty set, denoted in the algebra of sets. Any

arithmetic operation on an empty interval produces an empty interval result. For

additional information regarding the use of empty intervals, see the supplementary

papers [6] and [7] cited in Section 2.11 “References” on page 76.

Using these results, C++ implements the closed interval system. The system is closed

because all arithmetic operations and functions always produce valid interval

results. See the supplementary papers [2] and [8] cited in Section 2.11 “References”

on page 76.

2.4.2 Power Function pow(X,n) and pow(X,Y)

The power function can be used with integer or continuous exponents. With a

continuous exponent, the power function has indeterminate forms, similar to the

four arithmetic operators.

In the integer exponents case, the set of all values that an enclosure of must

contain is .

Monotonicity can be used to construct a sharp interval enclosure of the integer

power function. When n = 0, Xn, which represents the cset of Xn, is 1 for all

, and for all n.

In the continuous exponents case, the set of all values that an interval enclosure of

X**Y must contain is

where and are their respective containment sets. The

function exp(y(ln(x))) makes explicit that only values of need be considered,

and is consistent with the definition of X**Y with REALarguments in C++.

The result is empty if either interval argument is empty, or if sup(X) < 0.

∅

X
n

z z x
n∈ x X∈and{ }

x -∞ +∞,[]∈ ∅n ∅=

Y X()ln()()exp z z y x()ln()()exp y Y0 x X0∈,∈,∈{ }=

Y X()ln()()exp y x()ln()()exp
x 0≥
Chapter 2 C++ Interval Arithmetic Library Reference 45

TABLE 2-8 displays the containment sets for all the singularities and indeterminate

forms of exp(y(ln(x))).

The results in TABLE 2-8 can be obtained in two ways:

■ Directly compute the closure of the composite expression exp(y(ln(x))) for the

values of x0 and y0 for which the expression is undefined.

■ Use the containment-set evaluation theorem to bound the set of values in a

containment set.

For most compositions, the second option is much easier. If sufficient conditions are

satisfied, the closure of a composition can be computed from the composition of its

closures. That is, the closure of each sub-expression can be used to compute the

closure of the entire expression. In the present case,

exp(y(ln(x))) = .

That is, the cset of the expression on the left is equal to the composition of csets on

the right.

It is always the case that

exp(y(ln(x))) ⊆ .

Note that this is exactly how interval arithmetic works on intervals. The needed

closures of the ln and exp functions are:

A necessary condition for closure-composition equality is that the expression must

be a single-use expression (or SUE), which means that each independent variable can

appear only once in the expression.

In the present case, the expression is clearly a SUE.

TABLE 2-8 exp(y(ln(x)))

x0 y0 exp(y(ln(x)))

0 y0 < 0 +∞

1 -∞ [0,+∞]

1 +∞ [0,+∞]

+∞ 0 [0,+∞]

0 0 [0,+∞]

exp y0 ln x0()×()

exp y0 ln x0()×()

ln 0() ∞–=

ln +∞() +∞=

exp ∞–() 0=

exp +∞() +∞=
46 C++ Interval Arithmetic Programming Reference • July 2001

The entries in TABLE 2-8 follow directly from using the containment set of the basic

multiply operation in TABLE 2-6 on the closures of the ln and exp functions. For

example, with x0 = 1 and y0 = -∞, ln(x0) = 0. For the closure of multiplication on the

values -∞ and 0 in TABLE 2-6 on page 44, the result is [-∞, +∞]. Finally, exp([-∞, +∞]) =

[0, +∞], the second entry in TABLE 2-8. Remaining entries are obtained using the same

steps. These same results are obtained from the direct derivation of the containment

set of exp(y(ln(x))). At this time, sufficient conditions for closure-composition

equality of any expression have not been identified. Nevertheless, the following

statements apply:

■ The containment-set evaluation theorem guarantees that a containment failure

can never result from computing a composition of closures instead of a closure.

■ An expression must be a SUE for closure-composition equality to be true.

2.5 Set Theoretic Functions
C++ supports the following set theoretic functions for determining the interval hull

and intersection of two intervals.

CODE EXAMPLE 2-8 on page 48 demonstrates the use of the interval -specific

functions listed in TABLE 2-9.

TABLE 2-9 Interval-Specific Functions

Function Name Mathematical Symbol

interval_hull(X,Y) Interval Hull

intersect(X,Y) Intersection

disjoint(X,Y) Disjoint

in(r,Y) Element

in_interior(X,Y) Interior See Section 2.6.3 “Interior:

in_interior(X,Y) ” on

page 52.

proper_subset(X,Y) Proper Subset

proper_superset(X,Y) Proper Superset

subset(X,Y) Subset

superset(X,Y) Superset

∪--------
∩
A B∩ ∅=

∈

⊂

⊃

⊆

⊇

Chapter 2 C++ Interval Arithmetic Library Reference 47

CODE EXAMPLE 2-8 Set Operators

math% cat ce2-8.cc

#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X, Y;
 double R;
 R = 1.5;
 cout << "Press Control/C to terminate!"<< endl;
 cout <<"X,Y=?";
 cin >>X >>Y;
 for(;;){

cout <<endl << "For X =" <<X <<", and" << endl << "Y =" <<Y<<
 endl;

 cout <<"interval_hull(X,Y)=" << endl <<
 interval_hull(X,Y) <<endl;

 cout <<"intersect(X,Y)="<< intersect(X,Y) <<endl;

cout <<"disjoint(X,Y)=" << (disjoint(X,Y) ?"T":"F") <<endl;

 cout <<"in(R,Y)=" << (in(R,Y) ?"T":"F") <<endl;

 cout <<"in_interior(X,Y)=" <<
 (in_interior(X,Y) ?"T":"F") <<endl;

 cout <<"proper_subset(X,Y)=" <<
 (proper_subset(X,Y) ?"T":"F") <<endl;

 cout <<"proper_superset(X,Y)=" <<
 (proper_superset(X,Y) ?"T":"F") <<endl;

 cout <<"subset(X,Y)=" << (subset(X,Y) ?"T":"F") <<endl;

cout <<"superset(X,Y)=" << (superset(X,Y) ?"T":"F") <<endl;

 cout <<"X,Y=?";
 cin >>X>>Y;
 }
}

48 C++ Interval Arithmetic Programming Reference • July 2001

math%CC -xia -o ce2-8 ce2-8.cc
math%ce2-8
Press Control/C to terminate!
X,Y=? [1] [2]
For X =[0.1000000000000000E+001,0.1000000000000000E+001], and Y
=[0.2000000000000000E+001,0.2000000000000000E+001]
interval_hull(X,Y)=[0.1000000000000000E+001,0.2000000000000000E+
001]
intersect(X,Y)=[EMPTY]
disjoint(X,Y)=T
in(R,Y)=F
in_interior(X,Y)=F
proper_subset(X,Y)=F
proper_superset(X,Y)=F
subset(X,Y)=F
superset(X,Y)=F
X,Y=? [1,2] [1,3]
For X =[0.1000000000000000E+001,0.2000000000000000E+001], and Y
=[0.1000000000000000E+001,0.3000000000000000E+001]
interval_hull(X,Y)=[0.1000000000000000E+001,0.3000000000000000E+
001]
intersect(X,Y)=[0.1000000000000000E+001,0.2000000000000000E+001]
disjoint(X,Y)=F
in(R,Y)=T
in_interior(X,Y)=F
proper_subset(X,Y)=T
proper_superset(X,Y)=F
subset(X,Y)=T
superset(X,Y)=F
X,Y=? ^c

CODE EXAMPLE 2-8 Set Operators (Continued)
Chapter 2 C++ Interval Arithmetic Library Reference 49

2.5.1 Hull: X U Y or interval_hull(X,Y)

Description: Interval hull of two intervals. The interval hull is the smallest interval

that contains all the elements of the operand intervals.

Mathematical definitions:

Arguments: X and Y must be intervals with the same type.

Result type: Same as X.

2.5.2 Intersection: X∩Y or intersect(X,Y)

Description: Intersection of two intervals.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: Same as X.

interval_hull(X,Y) inf X Y∪() sup X Y∪(),[]≡

Y if X ∅ ,=,
X if Y ∅ , and=,
min x y(,) max x y(,)[,] , otherwise.






=

intersect(X,Y) z z Xandz Y∈∈ }{≡

∅ if X ∅=() or Y ∅=() or min x y(,) max x y(,)<(),

max x y(,) min x y(,)[,] , otherwise.






=

50 C++ Interval Arithmetic Programming Reference • July 2001

2.6 Set Relations
C++ provides the following set relations that have been extended to support

intervals.

2.6.1 Disjoint: X ∩Y = ∅ or disjoint(X,Y)

Description: Test if two intervals are disjoint.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool .

2.6.2 Element: r ∈ Y or in(r,Y)

Description: Test if the number, r , is an element of the interval, Y.

Mathematical and operational definitions:

Arguments: The type of r is an integer or floating-point type, and the type of Y is

interval .

Result type: interval_bool .

The following comments refer to the set relation:

■ If r is NaN (Not a Number), in(r, y) is unconditionally false.

■ If Y is empty, in(r, y) is unconditionally false.

disjoint(X,Y) X ∅=() or Y ∅=() or

X ∅≠() and Y ∅≠() and x X∈∀ y Y :∈ x y≠∀,()()
≡

X ∅=()= or Y ∅=() or X ∅≠() and

Y ∅≠() and y x<() or x y<()()
(

)

r Y∈ y Y∈∃ : y r=()≡
Y ∅≠()= and y r≤() and r y≤()

r Y∈
Chapter 2 C++ Interval Arithmetic Library Reference 51

2.6.3 Interior: in_interior(X,Y)

Description: Test if X is in interior of Y.

The interior of a set in topological space is the union of all open subsets of the set.

For intervals, the function in_interior(X,Y) means that X is a subset of Y, and

both of the following relations are false:

■ , or in C++: in(inf(Y), X)
■ , or in C++: in(sup(Y), X)

Note also that, , but in_interior([empty] ,[empty]) = true

The empty set is open and therefore is a subset of the interior of itself.

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool .

2.6.4 Proper Subset: X ⊂ Y or proper _subset(X,Y)

Description: Test if X is a proper subset of Y

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool .

inf Y() X∈
sup Y() X∈

∅ ∅∉

in_interior(X,Y) X ∅=() or≡
X ∅≠() and Y ∅≠() and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''< <∀()()

X ∅=() or X ∅≠() and Y ∅≠() and y x<() and x y<()()=

proper_subset(X,Y) X Y⊆() and X Y≠()≡

X ∅=() and Y ∅≠()() or

X ∅≠() and Y ∅≠() and y x≤() and x y<() or

y x<() x y≤()and

=

52 C++ Interval Arithmetic Programming Reference • July 2001

2.6.5 Proper Superset: X ⊃ Y or

proper _superset(X,Y)

Description: See proper subset with .

2.6.6 Subset: X ⊆ Y or subset(X,Y)

Description: Test if X is a subset of Y

Mathematical and operational definitions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool .

2.6.7 Superset: X ⊇ Y or superset(X,Y)

Description: See subset with .

X Y↔

subset(X,Y) X ∅=() or
X ∅≠() and Y ∅≠() and x X y' Y y'' Y∈∃,∈∃,∈ : y' x y''≤ ≤∀()()

≡

X ∅=() or= X ∅≠() and Y ∅≠() and y x≤() and x y≤()()

X Y↔
Chapter 2 C++ Interval Arithmetic Library Reference 53

2.7 Relational Functions

2.7.1 Interval Order Relations

Ordering intervals is more complicated than ordering points. Testing whether 2 is

less than 3 is unambiguous. With intervals, while the interval [2,3] is certainly less

than the interval [4,5] , what should be said about [2,3] and [3,4] ?

Three different classes of interval relational functions are implemented:

■ Certainly

■ Possibly

■ Set

For a certainly-relation to be true, every element of the operand intervals must

satisfy the relation. A possibly-relation is true if it is satisfied by any elements of the

operand intervals. The set-relations treat intervals as sets. The three classes of

interval relational functions converge to the normal relational functions on points

if both operand intervals are degenerate.

To distinguish the three function classes, the two-letter relation mnemonics (lt , le ,

eq , ne , ge , and gt) are prefixed with the letters c , p, or s . The functions seq(X,Y)
and sne(X,Y) correspond to the operators == and != . In all other cases, the

relational function class must be explicitly identified, as for example in:

■ clt(X,Y) certainly less than

■ plt(X,Y) possibly less than

■ slt(X,Y) set less than

See Section 2.4 “Operators and Functions” on page 40 for the syntax and semantics

of all interval functions.
54 C++ Interval Arithmetic Programming Reference • July 2001

The following program demonstrates the use of a set-equality test.

CODE EXAMPLE 2-9 uses the set-equality test to verify that X+Y is equal to the interval

[6, 8] using the == operator.

Use CODE EXAMPLE 2-10 and CODE EXAMPLE 2-8 on page 48 to explore the result of

interval -specific relational functions.

CODE EXAMPLE 2-9 Set-Equality Test

math% cat ce2-9.cc

#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X("[2,3]");
 interval <double> Y("[4,5]");
 if (X+Y == interval <double>("[6,8]"))
 cout << "Check." <<endl;
}

math% CC -xia -o ce2-9 ce2-9.cc
math% ce2-9
Check.

CODE EXAMPLE 2-10 Interval Relational Functions

math% cat ce2-10.cc

#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X, Y;
 cout << "Press Control/C to terminate!"<< endl;
 cout <<" X,Y =?";
 cin >>X >>Y;
Chapter 2 C++ Interval Arithmetic Library Reference 55

 for(;;){
 cout <<endl << "For X =" <<X << ", and Y =" <<Y<< endl;

 cout <<"ceq(X,Y),peq(X,Y),seq(X,Y)="
 << (ceq(X,Y) ?"T ":"F ")
 << (peq(X,Y) ?"T ":"F ")
 <<(seq(X,Y) ?"T ":"F ") <<endl;

 cout <<"cne(X,Y),pne(X,Y),sne(X,Y)="
 << (cne(X,Y) ?"T ":"F ")
 << (pne(X,Y) ?"T ":"F ")
 <<(sne(X,Y) ?"T ":"F ") <<endl;

 cout <<"cle(X,Y),ple(X,Y),sle(X,Y)="
 << (cle(X,Y) ?"T ":"F ")
 << (ple(X,Y) ?"T ":"F ")
 <<(sle(X,Y) ?"T ":"F ") <<endl;

 cout <<"clt(X,Y),plt(X,Y),slt(X,Y)="
 << (clt(X,Y) ?"T ":"F ")
 << (plt(X,Y) ?"T ":"F ")
 <<(slt(X,Y) ?"T ":"F ") <<endl;
 cout <<"cge(X,Y),pge(X,Y),sge(X,Y)="
 << (cge(X,Y) ?"T ":"F ")
 << (pge(X,Y) ?"T ":"F ")
 <<(sge(X,Y) ?"T ":"F ") <<endl;

 cout <<"cgt(X,Y),pgt(X,Y),sgt(X,Y)="
 << (cgt(X,Y) ?"T ":"F ")
 << (pgt(X,Y) ?"T ":"F ")
 <<(sgt(X,Y) ?"T ":"F ") <<endl;

 cout <<" X,Y =?";
 cin >>X>>Y;
 }
}

CODE EXAMPLE 2-10 Interval Relational Functions (Continued)
56 C++ Interval Arithmetic Programming Reference • July 2001

An interval relational function, denoted qop , is composed by concatenating both

of the following:

■ An operator prefix, q ∈ {c,p,s }, where c , p, and s stand for certainly, possibly,

and set, respectively

■ A relational function suffix, op ∈ {lt,le , eq , ne , gt , ge}

In place of seq(X,Y) and sne(X,Y) , == and != operators are accepted. To eliminate

code ambiguity, all other interval relational functions must be made explicit by

specifying a prefix.

Letting “nop” stand for the complement of the operator op, the certainly and possibly

functions are related as follows:

cop ≡ !(p nop)

pop ≡ !(c nop)

math% CC -xia -o ce2-10 ce2-10.cc
math% ce2-10

Press Control/C to terminate!
 X,Y =? [2] [3]
For X =[0.2000000000000000E+001,0.2000000000000000E+001], and Y
=[0.3000000000000000E+001,0.3000000000000000E+001]
ceq(X,Y),peq(X,Y),seq(X,Y)=F F F
cne(X,Y),pne(X,Y),sne(X,Y)=T T T
cle(X,Y),ple(X,Y),sle(X,Y)=T T T
clt(X,Y),plt(X,Y),slt(X,Y)=T T T
cge(X,Y),pge(X,Y),sge(X,Y)=F F F
cgt(X,Y),pgt(X,Y),sgt(X,Y)=F F F
 X,Y =? 2 3
For X =[0.1000000000000000E+001,0.3000000000000000E+001], and Y
=[0.2000000000000000E+001,0.4000000000000000E+001]
ceq(X,Y),peq(X,Y),seq(X,Y)=F T F
cne(X,Y),pne(X,Y),sne(X,Y)=F T T
cle(X,Y),ple(X,Y),sle(X,Y)=F T T
clt(X,Y),plt(X,Y),slt(X,Y)=F T T
cge(X,Y),pge(X,Y),sge(X,Y)=F T F
cgt(X,Y),pgt(X,Y),sgt(X,Y)=F T F
 X,Y =? ^c

CODE EXAMPLE 2-10 Interval Relational Functions (Continued)
Chapter 2 C++ Interval Arithmetic Library Reference 57

Note – This identity between certainly and possibly functions holds unconditionally

if op ∈ {eq , ne}, and otherwise, only if neither argument is empty. Conversely, the

identity does not hold if op ∈ {lt , le , gt , ge} and either operand is empty.

Assuming neither argument is empty, TABLE 2-10 contains the C++ operational

definitions of all interval relational functions of the form:

qop(X,Y) , given X = [x, x] and Y = [y, y]) .

The first column contains the value of the prefix, and the first row contains the value

of the operator suffix. If the tabled condition holds, the result is true.

2.7.2 Set Relational Functions

For an affirmative order relation with

op ∈ {lt , le , eq , ge , gt } and

,

between two points , the mathematical definition of the corresponding

set-relation, Sop , between two non-empty intervals is:

For the relation between two points , the corresponding set relation,

sne(X,Y) , between two non-empty intervals X and Y is:

TABLE 2-10 Operational Definitions of Interval Order Relations

lt le eq ge gt ne

s

x < y
and

x < y

x ≤ y
and

x ≤ y

x = y
and

x = y

x ≥ y
and

x ≥ y

x > y
and

x > y

x ≠ y
or

x ≠ y

c x < y x ≤ y
y ≤ x

and
x ≤ y

x ≥ y x > y
x > y

or
y > x

p x < y x ≤ y
x ≤ y

and
y ≤ x

x ≥ y x > y
y > x

or
x > y

op >,≥,=,≤,<{ }∈

x and y
X andY

Sop X Y,() x X y Y∈∃,∈ : x op y∀() and y Y x X:∈∃,∈ x op y∀().≡

≠ x andy

sne X Y,() x X∈∃ y Y :∈ x y≠∀,() or y Y∈∃ x X :∈ x y≠∀,().≡
58 C++ Interval Arithmetic Programming Reference • July 2001

Empty intervals are explicitly considered in each of the following relations. In each

case:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool .

2.7.2.1 Set-equal: or seq(X,Y)

Description: Test if two intervals are set-equal.

Mathematical and operational definitions:

Any interval is set-equal to itself, including the empty interval. Therefore,

seq ([a,b],[a,b]) is true.

2.7.2.2 Set-greater-or-equal: sge(X,Y)

Description: See set-less-or-equal with .

2.7.2.3 Set-greater: sgt(X,Y)

Description: See set-less with .

2.7.2.4 Set-less-or-equal: sle(X,Y)

Description: Test if one interval is set-less-or-equal to another.

Mathematical and operational definitions:

Any interval is set-equal to itself, including the empty interval. Therefore

sle([X,X]) is true.

X Y=

seq(X,Y) X Y ∅=∪() or X ∅≠() and Y ∅≠() and≡
x X y Y∈∃,∈ : x y=∀() and y Y x X:∈∃,∈ x y=∀())

X ∅=() and Y ∅=()()= or

X ∅≠() and Y ∅≠() and x y=() and y x=()()

X Y↔

X Y↔

sle(X,Y) X Y ∅=∪() or X ∅≠() and Y ∅≠() and
x X y Y∈∃,∈ : x y≤∀() and y Y x X:∈∃,∈ x y≤∀()

(
)

≡

X ∅=() and Y ∅=()()= or X ∅≠() and Y ∅≠() and
x y≤() and x y≤()

(
)

Chapter 2 C++ Interval Arithmetic Library Reference 59

2.7.2.5 Set-less: slt(X,Y)

Description: Test if one interval is set-less than another.

2.7.2.6 Set-not-equal: or sne(X,Y)

Description: Test if two intervals are not set-equal.

Mathematical and operational definitions:

Any interval is set-equal to itself, including the empty interval. Therefore

sne([X,X]) is false.

2.7.3 Certainly Relational Functions

The certainly relational functions are true if the underlying relation is true for every

element of the operand intervals. For example, clt([a,b],[c,d]) is true if x < y
for all and . This is equivalent to b < c.

For an affirmative order relation with

op ∈ {lt , le , eq , ge , gt } and

,

between two points x and y, the corresponding certainly-true relation cop between

two intervals, X and Y, is

.

With the exception of the anti-affirmative certainly-not-equal relation, if either

operand of a certainly relation is empty, the result is false. The one exception is the

certainly-not-equal relation, cne(X,Y) , which is true in this case.

slt(X,Y) X ∅≠() and Y ∅≠() and
x X y Y∈∃,∈ : x y<∀() and y Y x X:∈∃,∈ x y<∀()

≡

X ∅≠()= and Y ∅≠() and x y<() and x y<()

X Y≠

sne(X,Y) X ∅=() and Y ∅≠()() or X ∅≠() and Y ∅=()() or
X ∅≠() and Y ∅≠() and x X y Y∈∀,∈ : x y≠∃() or
y Y x X:∈∀,∈ x y≠∃()

(
)

(
)

≡

X ∅=() and Y ∅≠()() or X ∅≠() and Y ∅=()()= or
X ∅≠() and Y ∅≠() and x y≠() or x y≠()()()

x a b,[]∈ y c d[,]∈

op >,≥,=,≤,<{ }∈

cop X Y,() X ∅≠() and Y ∅≠() and x X y Y∈∀,∈ : x yop∀()≡
60 C++ Interval Arithmetic Programming Reference • July 2001

Mathematical and operational definitions cne(X,Y) :

For each of the certainly relational functions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool .

2.7.4 Possibly Relational Functions

The possibly relational functions are true if any element of the operand intervals

satisfy the underlying relation. For example, plt([X,Y]) is true if there exists an

and a such that x < y. This is equivalent to .

For an affirmative order relation with

op ∈ {lt , le , eq , ge , gt } and

,

between two points x and y, the corresponding possibly-true relation Pop between

two intervals X and Y is defined as follows:

.

If the empty interval is an operand of a possibly relation then the result is false. The

one exception is the anti-affirmative possibly-not-equal relation, pne(X,Y) , which is

true in this case.

Mathematical and operational definitions pne(X,Y) :

For each of the possibly relational functions:

Arguments: X and Y must be intervals with the same type.

Result type: interval_bool .

cne(X,Y) X ∅=() or Y ∅=() or X ∅≠() and Y ∅≠() and
x X y Y∈∀,∈ : x y≠∀()

(
)

≡

X ∅=()= or Y ∅=() or X ∅≠() and Y ∅≠() and
x y>() or y x>()()

(
)

x X[]∈ y Y[]∈ x y<

op >,≥,=,≤,<{ }∈

pop(x, y) X ∅≠() and Y ∅≠() and x X y Y∈∃,∈ : x yop∃()≡

pne(X,Y) X ∅=() or Y ∅=() or
X ∅≠() and Y ∅≠() and x X y Y∈∃,∈ : x y≠∃()()

≡

X ∅=()= or Y ∅=() or
X ∅≠() and Y ∅≠() and x y>() or y x>()()()
Chapter 2 C++ Interval Arithmetic Library Reference 61

2.8 Input and Output
The process of performing interval stream input/output is the same as for other

non-interval data types.

Note – Floating-point stream manipulations do not influence interval input/output.

2.8.1 Input

When using the single-number form of an interval, the last displayed digit is used to

determine the interval’s width. See Section 2.8.2 “Single-Number Output” on

page 63. For more detailed information, see M. Schulte, V. Zelov, G.W. Walster, D.

Chiriaev, “Single-Number Interval I/O,” Developments in Reliable Computing, T.

Csendes (ed.), (Kluwer 1999).

If an infimum is not internally representable, it is rounded down to an internal

approximation known to be less than the exact value. If a supremum is not internally

representable, it is rounded up to an internal approximations known to be greater

than the exact input value. If the degenerate interval is not internally representable,

it is rounded down and rounded up to form an internal interval approximation

known to contain the exact input value. These results are shown in

CODE EXAMPLE 2-11.

CODE EXAMPLE 2-11 Single-Number Output Examples

math% cat ce2-11.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

main() {
 interval<double> X[8];
 for (int i = 0; i < 8 ; i++) {
 cin >> X[i];
 cout << X[i] << endl;
 }
}

62 C++ Interval Arithmetic Programming Reference • July 2001

2.8.2 Single-Number Output

The function single_number_output() is used to display intervals in the single-

number form and has the following syntax, where cout is an output stream.

If the external interval value is not degenerate, the output format is a floating-

point or integer literal (X without square brackets, "["..."] "). The external value is

interpreted as a non-degenerate mathematical interval [x] + [-1,1]uld.

The single-number interval representation is often less precise than the [inf, sup]

representation. This is particularly true when an interval or its single-number

representation contains zero or infinity.

For example, the external value of the single-number representation for [-15, +75] is

ev([0E2]) = [-100, +100]. The external value of the single-number representation for

[1, ∞] is ev([0E+inf]) = .

math% CC -xia ce2-11.cc -o ce2-11
math% ce2-11
1.234500
[0.1234498999999999E+001,0.1234501000000001E+001]
[1.2345]
[0.1234499999999999E+001,0.1234500000000001E+001]
[-inf,2]
[-Infinity,0.2000000000000000E+001]
[-inf]
[-Infinity,-.1797693134862315E+309]
[EMPTY]
[EMPTY]
[1.2345,1.23456]
[0.1234499999999999E+001,0.1234560000000001E+001]
[inf]
 [0.1797693134862315E+309, Infinity]
[Nan]
[-Infinity, Infinity]

single_number_output(interval<float> X, ostream& out=cout)
single_number_output(interval<double> X, ostream& out=cout)
single_number_output(interval<long double> X, ostream& out=cout)

CODE EXAMPLE 2-11 Single-Number Output Examples (Continued)

-∞ +∞,[]
Chapter 2 C++ Interval Arithmetic Library Reference 63

In these cases, to produce a narrower external representation of the internal

approximation, the [inf , sup] form is used to display the maximum possible

number of significant digits within the output field.

If it is possible to represent a degenerate interval within the output field, the output

string for a single number is enclosed in obligatory square brackets, "[", ... "] " to

signify that the result is a point.

An example of using ndigits to display the maximum number of significant

decimal digits in the single-number representation of the non-empty interval X is

shown in CODE EXAMPLE 2-13 on page 65.

Note – If the argument of ndigits is a degenerate interval, the result is INT_MAX.

CODE EXAMPLE 2-12 Single-Number [inf, sup]-style Output

math% cat ce2-12.cc

#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X(-1, 10);
 interval <double> Y(1, 6);
 single_number_output(X, cout);
 cout << endl;

 single_number_output(Y, cout);
 cout << endl;
}

math% CC -xia -o ce2-12 ce2-12.cc
math% ce2-12
[-1.0000 , 10.000]
[1.0000 , 6.0000]
64 C++ Interval Arithmetic Programming Reference • July 2001

Increasing interval width decreases the number of digits displayed in the

single-number representation. When the interval is degenerate all remaining

positions are filled with zeros and brackets are added if the degenerate interval

value is represented exactly.

2.8.3 Single-Number Input/Output and Base

Conversions

Single-number interval input, immediately followed by output, can appear to

suggest that a decimal digit of accuracy has been lost, when in fact radix conversion

has caused a 1 or 2 ulp increase in the width of the stored input interval. For

example, an input of 1.37 followed by an immediate print will result in 1.3 being

output.

As shown in CODE EXAMPLE 1-6 on page 23, programs must use character input and

output to exactly echo input values and internal reads to convert input character

strings into valid internal approximations.

CODE EXAMPLE 2-13 ndigits

math% cat ce2-13.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

main() {
 interval<double> X[4];
 X[0] = interval<double>("[1.2345678, 1.23456789]");
 X[1] = interval<double>("[1.234567, 1.2345678]");
 X[2] = interval<double>("[1.23456, 1.234567]");
 X[3] = interval<double>("[1.1345, 1.23456]");
 for (int i = 0; i < 4 ; i++) {
 single_number_output((interval<long double>)X[i], cout);
 cout << " ndigits =" << ndigits(X[i]) << endl;
 }
}
math% CC ce2-13.cc -xia -o ce2-13
math% ce2-13
 0.12345679 E+001 ndigits =8
 0.1234567 E+001 ndigits =7
 0.123456 E+001 ndigits =6
 0.12345 E+001 ndigits =5
Chapter 2 C++ Interval Arithmetic Library Reference 65

2.9 Mathematical Functions
This section lists the type-conversion, trigonometric, and other functions that accept

interval arguments. The symbols and in the interval are used to denote

its ordered elements, the infimum, or lower bound and supremum, or upper bound,

respectively. In point (non-interval) function definitions, lowercase letters x and y are

used to denote floating-point or integer values.

When evaluating a function, f, of an interval argument, X, the interval result, f(X),

must be an enclosure of its containment set, f(x). Therefore,

A similar result holds for functions of n-variables. Determining the containment set

of values that must be included when the interval contains values outside the

domain of f is discussed in the supplementary paper [1] cited in Section 2.11

“References” on page 76. The results therein are needed to determine the set of

values that a function can produce when evaluated on the boundary of, or outside

its domain of definition. This set of values, called the containment set is the key to

defining interval systems that return valid results, no matter what the value of a

function’s arguments or an operator’s operands. As a consequence, there are no

argument restrictions on any interval functions in C++.

2.9.1 Inverse Tangent Function atan2(Y,X)

This sections provides additional information about the inverse tangent function.

For further details, see the supplementary paper [9] cited in Section 2.11

“References” on page 76.

Description: Interval enclosure of the inverse tangent function over a pair of

intervals.

Mathematical definition:

x x x x,[]

f X() f x()
x X∈
∪=

x x,[]

2 Y X,()atan θ
h θsin y0=
h θcos x0=

h x0
2

y0
2

+()=
1 2⁄

 
 
 
 
 

x X∈
y Y∈

∪⊇
66 C++ Interval Arithmetic Programming Reference • July 2001

Special values: TABLE 2-11 and CODE EXAMPLE 2-14 display the atan2 indeterminate

forms.

TABLE 2-11 atan2 Indeterminate Forms

y0 x0

0 0 [-1, 1] [-1, 1]

+∞ +∞ [0, 1] [0, 1]

+∞ -∞ [0, 1] [-1, 0]

-∞ -∞ [-1, 0] [-1, 0]

-∞ +∞ [-1, 0] [0, 1]

CODE EXAMPLE 2-14 atan2 Indeterminate Forms

math% cat ce2-14.cc
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main() {
 interval <double> X,Y;
 cout << "Press Control/C to terminate!"<< endl;
 cout <<"Y,X=?";
 cin >>Y >>X;
 for(;;) {
 cout <<endl << "For X =" <<X << endl;
 cout << "For Y =" <<Y << endl;
 cout << atan2(Y,X) << endl << endl;
 cout << "Y,X=?";
 cin >>Y >>X;
 }
}

θsin h θsin y0={ } θcos h θcos x0={ } θ h x0
2

y0
2

+()=
1 2⁄{ }

π– π,[]

0 π
2
---,[]

π
2
--- π,[]

π–
π–

2
-------,[]

π–
2

------- 0,[]
Chapter 2 C++ Interval Arithmetic Library Reference 67

Result value: The interval result value is an enclosure for the specified interval. An

ideal enclosure is an interval of minimum width that contains the exact

mathematical interval in the description.

The result is empty if one or both arguments are empty.

In the case where x < 0 and , to get a sharp interval enclosure (denoted by Θ),

the following convention uniquely defines the set of all possible returned interval

angles:

This convention, together with

math% CC -xia -o ce2-14 ce2-14.cc
math% ce2-14
Press Control/C to terminate!
Y,X=? [0] [0]
For X =[0.0000000000000000E+000,0.0000000000000000E+000]
For Y =[0.0000000000000000E+000,0.0000000000000000E+000]
[-.3141592653589794E+001,0.3141592653589794E+001]

Y,X=? inf inf
For X =[0.1797693134862315E+309, Infinity]
For Y =[0.1797693134862315E+309, Infinity]
[0.0000000000000000E+000,0.1570796326794897E+001]

Y,X=? inf -inf
For X =[-Infinity,-.1797693134862315E+309]
For Y =[0.1797693134862315E+309, Infinity]
[0.1570796326794896E+001,0.3141592653589794E+001]

Y,X=? -inf inf
For X =[0.1797693134862315E+309, Infinity]
For Y =[-Infinity,-.1797693134862315E+309]
[-.1570796326794897E+001,0.0000000000000000E+000]

Y,X=? -inf -inf
For X =[-Infinity,-.1797693134862315E+309]
For Y =[-Infinity,-.1797693134862315E+309]
[-.3141592653589794E+001,-.1570796326794896E+001]

Y,X=? ^c

CODE EXAMPLE 2-14 atan2 Indeterminate Forms (Continued)

0 Y∈

π– m Θ() π≤<

0 w Θ() 2π≤≤
68 C++ Interval Arithmetic Programming Reference • July 2001

results in a unique definition of the interval angles Θ that atan2(Y,X) must

include.

TABLE 2-12 contains the tests and arguments of the floating-point atan2 function that

are used to compute the endpoints of Θ in the algorithm that satisfies the constraints

required to produce sharp interval angles. The first two columns define the

distinguishing cases. The third column contains the range of possible values of the

midpoint, m(Θ), of the interval Θ. The last two columns show how the endpoints of

Θ are computed using the floating-point atan2 function. Directed rounding must be

used to guarantee containment.

2.9.2 Maximum: maximum(X1,X2)

Description: Range of maximum.

The containment set for max(X1, ..., Xn) is:

.

The implementation of the max function must satisfy:

maximum(X1,X2,[X3,...]) {max(X1, ..., Xn)}.

2.9.3 Minimum: minimum(X1,X2)

Description: Range of minimum.

The containment set for min(X1, ..., Xn) is:

.

The implementation of the min function must satisfy:

minimum(X1,X2,[X3,...]) {min(X1, ..., Xn)}.

TABLE 2-12 Tests and Arguments of the Floating-Point atan2 Function

Y X m(Θ) θ θ

- < y x < 0 atan2 (y, x) atan2 (, x) + 2π

- = y x < 0 atan2 (y, x) 2π − θ

< - x < 0 atan2 (y, x) - 2π atan2 (, x)

y---
π
2
--- m Θ() π< < y---

y--- m Θ() π=

y y--- π– m Θ()
π–

2
-------< < y---

z z max x1 … xn, ,() x,
i

Xi∈={ } sup hull x1 … xn, ,()() sup hull x1 … xn, ,()(),[]=

⊇

z z min x1 … xn, ,() x,
i

Xi∈={ } inf hull x1 … xn, ,()() inf hull x1 … xn, ,()(),[]=

⊇

Chapter 2 C++ Interval Arithmetic Library Reference 69

2.9.4 Functions That Accept Interval Arguments

TABLE 2-14 through TABLE 2-16 list the properties of functions that accept interval

arguments. TABLE 2-13 lists the tabulated properties of interval functions in these

tables.

Because indeterminate forms are possible, special values of the pow and atan2

function are contained in Section 2.4.2 “Power Function pow(X,n) and pow(X,Y) ”

on page 45 and Section 2.9.1 “Inverse Tangent Function atan2(Y,X) ” on page 66,

respectively. The remaining functions do not require this treatment.

TABLE 2-13 Tabulated Properties of Each interval Function

Tabulated Property Description

Function what the function does

Definition mathematical definition

No. of Args. number of arguments the function accepts

Name the function’s name

Argument Type valid argument types

Function Type type returned for specific argument data type

TABLE 2-14 interval Constructor

Conversion To No. of Args. Name
Argument
Type

Function
Type

interval 1, 2 interval const char*
const interval<float>&
const interval<double>&
const interval<long double>&
int
long long
float
double
long double
int, int
long long, long long
float, float
double, double
long double, long double

The function type can be

interval<float> ,

interval<double> , or

interval<long
double> for each

argument type.
70 C++ Interval Arithmetic Programming Reference • July 2001

TABLE 2-15 interval Arithmetic Functions

Function
Point
Definition

No. of
Args. Name

Argument
Type

Function
Type

Absolute value |a| 1 fabs interval <double>
interval <float>
interval <long double>

interval <double>
interval <float>
interval <long double>

Remainder a-b(int(a/b)) 2 fmod interval <double>
interval <float>
interval <long double>

interval <double>
interval <float>
interval <long double>

Choose largest

value1
max(a,b) 2 maximum interval <double>

interval <float>
interval <long double>

interval <double>
interval <float>
interval <long double>

Choose smallest

value1
min(a,b) 2 minimum interval <double>

interval <float>
interval <long double>

interval <double>
interval <float>
interval <long double>

(1) The minimum and maximum functions ignore empty interval arguments unless all arguments are empty, in which case, the empty in-
terval is returned.

TABLE 2-16 Other interval Mathematical Functions

Function
Point
Definition

No. of
Args. Name

Argument
Type

Function
Type

Square Root1 exp{ln(a)/2} 1 sqrt interval <double>
interval <float>

interval <double>
interval <float>

Exponential exp(a) 1 exp interval <double>
interval <float>

interval <double>
interval <float>

Natural

logarithm

ln(a) 1 log interval <double>
interval <float>

interval <double>
interval <float>

Common

logarithm

log(a) 1 log10 interval <double>
interval <float>

interval <double>
interval <float>

(1) sqrt(a) is multi-valued. A proper interval enclosure must contain both the positive and negative square roots. Defining the sqrt func-
tion to be

eliminates this difficulty.

aln
2

 
 
 

exp
Chapter 2 C++ Interval Arithmetic Library Reference 71

TABLE 2-17 interval Trigonometric Functions

Function
Point
Definition

No. of
Args. Name

Argument
Type

Function
Type

Sine sin(a) 1 sin interval <double>
interval <float>

interval <double>
interval <float>

Cosine cos(a) 1 cos interval <double>
interval <float>

interval <double>
interval <float>

Tangent tan(a) 1 tan interval <double>
interval <float>

interval <double>
interval <float>

Arcsine arcsin(a) 1 asin interval <double>
interval <float>

interval <double>
interval <float>

Arccosine arccos(a) 1 acos interval <double>
interval <float>

interval <double>
interval <float>

Arctangent arctan(a) 1 atan interval <double>
interval <float>

interval <double>
interval <float>

Arctangent1 arctan(a/b) 2 atan2 interval <double>
interval <float>

interval <double>
interval <float>

Hyperbolic

Sine

sinh(a) 1 sinh interval <double>
interval <float>

interval <double>
interval <float>

Hyperbolic

Cosine

cosh(a) 1 cosh interval <double>
interval <float>

interval <double>
interval <float>

Hyperbolic

Tangent

tanh(a) 1 tanh interval <double>
interval <float>

interval <double>
interval <float>

(1) arctan(a/b) = θ, given a = h sinθ, b = h cosθ, and h2 = a2 + b2.
72 C++ Interval Arithmetic Programming Reference • July 2001

TABLE 2-18 interval -Specific Functions

Function Definition
No. of
Args. Name

Argument
Type

Function
Type

Infimum inf([a, b]) = a 1 inf interval <double>
interval <float>
interval <long double>

double
float
long double

Supremum sup([a, b]) = b 1 sup interval <double>
interval <float>
interval <long double>

double
float
long double

Width w([a, b]) = b - a 1 wid interval <double>
interval <float>
interval <long double>

double
float
long double

Midpoint mid([a, b]) =

(a + b)/2
1 mid interval <double>

interval <float>
interval <long double>

double
float
long double

Magnitude1 max(|a|) ∈A 1 mag interval <double>
interval <float>
interval <long double>

double
float
long double

Mignitude2 min(|a|) ∈A 1 mig interval <double>
interval <float>
interval <long double>

double
float
long double

Test for

empty

interval

true if A
is empty

1 isempty interval <double>
interval <float>
interval <long double>

interval_bool
interval_bool
interval_bool

Floor floor(A) 1 floor interval <double>
interval <float>
interval <long double>

double
double
double

Ceiling ceiling(A) 1 ceil interval <double>
interval <float>
interval <long double>

double
double
double

Number of

digits3
Maximum

number of

significant

decimal digits in

the single-

number

representation of

a non-empty

interval

1 ndigits interval <double>
interval <float>
interval <long double>

int
int
int

(1) mag([a, b]) = max(|a|,|b|)

(2) mig([a, b]) = min(|a|,|b|), if a > 0 or b < 0, otherwise 0

(3) Special cases: ndigits([-inf, +inf]) = ndigits([empty]) = 0
Chapter 2 C++ Interval Arithmetic Library Reference 73

2.10 Interval Types and the Standard
Template Library
When interval types are used as template arguments for STL classes, a blank must be

inserted between two consecutive > symbols, as shown on the line marked note 1 in

CODE EXAMPLE 2-15.

CODE EXAMPLE 2-15 Example of Using an Interval Type as a Template Argument for STL
Classes

math% cat ce2-15.cc
#include <limits.h>
#include <strings.h>
#include <sunmath.h>
#include <stack>
#include <suninterval.h>
#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main()
{
 std::stack<interval<double> > st; //note 1
 return 0;
}
math% CC -xia ce2-15.c
74 C++ Interval Arithmetic Programming Reference • July 2001

Otherwise, >> is incorrectly interpreted as the right shift operator, as shown on the

line marked note 1 in CODE EXAMPLE 2-16.

Note – Interpreting >> as a right shift operator is a general design problem in C++.

CODE EXAMPLE 2-16 >> Incorrectly Interpreted as the Right Shift Operator

math% cat ce2-16.cc
#include <limits.h>
#include <strings.h>
#include <sunmath.h>
#include <stack>
#include <suninterval.h>

#if __cplusplus >= 199711
using namespace SUNW_interval;
#endif

int main()
{
 std::stack<interval<double>> st; //note 1
 return 0;
}
math% CC -xia -o ce2-16 ce2-16.cc
"ce2-16.cc", line 13: Error: "," expected instead of ">>".
"ce2-16.cc", line 13: Error: Illegal value for template parameter.
"ce2-16.cc", line 13: Error: "," expected instead of ";".
"ce2-16.cc", line 13: Error: Illegal value for template parameter.
4 Error(s) detected.
Chapter 2 C++ Interval Arithmetic Library Reference 75

2.11 References
The following technical reports are available online. See the interval arithmetic

readme for the location of these files.

1. G.W. Walster, E.R. Hansen, and J.D. Pryce, “Extended Real Intervals and the

Topological Closure of Extended Real Relations,” Technical Report, Sun

Microsystems. February 2000.

2. G. William Walster, “Empty Intervals,” Technical Report, Sun Microsystems.

April 1998.

3. G. William Walster, “Closed Interval Systems,” Technical Report, Sun

Microsystems. August 1999.

4. G. William Walster, “Literal Interval Constants,” Technical Report, Sun

Microsystems. August 1999.

5. G. William Walster, “Widest-Need Interval Expression Evaluation,” Technical

Report, Sun Microsystems. August 1999.

6. G. William Walster, “Compiler Support of Interval Arithmetic With Inline Code

Generation and Nonstop Exception Handling,” Technical Report, Sun

Microsystems. February 2000.

7. G. William Walster, “Finding Roots on the Edge of a Function’s Domain,”

Technical Report, Sun Microsystems. February 2000.

8. G. William Walster, “Implementing the ‘Simple’ Closed Interval System,”

Technical Report, Sun Microsystems. February 2000.

9. G. William Walster, “Interval Angles and the Fortran ATAN2 Intrinsic Function,”

Technical Report, Sun Microsystems. February 2000.

10. G. William Walster, “The ‘Simple’ Closed Interval System,” Technical Report, Sun

Microsystems. February 2000.

11. G. William Walster, Margaret S. Bierman, “Interval Arithmetic in Forte Developer

Fortran,” Technical Report, Sun Microsystems. March 2000.
76 C++ Interval Arithmetic Programming Reference • July 2001

Glossary

affirmative relation An order relation other than certainly, possibly, or set not equal. Affirmative
relations affirm something, such as a < b.

affirmative relational
functions An affirmative relational function is an element of the set: {<, ≤, =, ≥, >}.

anti-affirmative
relation An anti-affirmative relation is a statement about what cannot be true. The order

relation ≠ is the only anti-affirmative relation in C++.

anti-affirmative
relational function The C++ ! = operator implements the anti-affirmative relation. The certainly,

possible, and set functions for interval arguments are denoted cne , pne , and

sne , respectively.

assignment statement An interval assignment statement is a C++ statement having the form:

V = expr ession. The left-hand side of the assignment statement is the

interval variable or array element V.

certainly true
relational function See relational functions: certainly true.

closed interval A closed interval includes its endpoints. A closed interval is a closed set. The

interval [2, 3] = {z | 2 ≤ z ≤ 3} is closed, because its endpoints are included. The

interval (2, 3) = {z | 2 < z < 3} is open, because its endpoints are not included.

Interval arithmetic, as implemented in C++, only deals with closed intervals.

closed mathematical
system In a closed mathematical system, there can be no undefined operator-operand

combinations. Any defined operation on elements of a closed system must

produce an element of the system. The real number system is not closed,

because, in this system, division by zero is undefined.
Glossary 77

compact set A compact set contains all limit or accumulation points in the set. That is, given

the set, S, and sequences, , the closure of S is ,

where denotes an accumulation or limit point of the sequence {sj}.

The set of real numbers is {z | -∞ < z < +∞} is not compact. The set of extended

real numbers, , is compact.

composite expression Forming a new expression, f, (the composite expression) from the given

expressions, g and h by the rule f({ }) = g(h({ })) for all singleton sets,

{ } = {x1} {xn} in the domain of h for which h is in the domain of g.

Singleton set arguments connote the fact that expressions can be either

functions or relations.

containment
constraint The containment constraint on the interval evaluation, f([x]), of the expression, f,

at the degenerate interval, [x], is f([x]) ⊇ f(x), where f(x) denotes the

containment set of all possible values that f([x]) must contain. Because the

containment set of 1 / 0 = {-∞, +∞}, [1] / [0] = hull({-∞, +∞}) = [-∞, +∞]. See also

containment set.

containment failure A containment failure is a failure to satisfy the containment constraint. For

example, a containment failure results if [1]/[0] is defined to be [empty]. This

can be seen by considering the interval expression

for X=[0] and Y, given . The containment set of the first expression is [0].

However, if [1]/[0] is defined to be [empty], the second expression is also

[empty]. This is a containment failure.

containment set The containment set, h(x) of the expression h is the smallest set that does not

violate the containment constraint when h is used as a component of any

composition, f({x}) = g(h(x), x).

For h(x, y) = x ÷ y,

h(+∞, +∞) = [0, +∞].

See also f(set).

containment set closure
identity Given any expression f(x) = f(x1, , xn) of n-variables and the point, x0, then

= f({x0}), the closure of f at the point, x0.

containment set
equivalent Two expressions are containment-set equivalent if their containment sets are

everywhere identical.

sj{ } S∈ S lim j ∞→ s
j

sj S∈{ }=
lim j ∞→

ℜ∗

x x
x …⊗ ⊗

X
X Y+
-------------- 1

1 Y
X
----+

-------------=

0 Y∉

…
f x

˜
()
78 C++ Interval Arithmetic Programming Reference • July 2001

degenerate interval A degenerate interval is a zero-width interval. A degenerate interval is a

singleton set, the only element of which is a point. In most cases, a degenerate

interval can be thought of as a point. For example, the interval [2, 2] is

degenerate, and the interval [2, 3] is not.

directed rounding Directed rounding is rounding in a particular direction. In the context of interval

arithmetic, rounding up is towards +∞, and rounding down is towards -∞. The

direction of rounding is symbolized by the arrows, ↓ and ↑. Therefore, with

5-digit arithmetic, ↑ 2.00001 = 2.0001. Directed rounding is used to implement

interval arithmetic on computers so that the containment constraint is never

violated.

disjoint interval Two disjoint intervals have no elements in common. The intervals [2, 3] and

[4, 5] are disjoint. The intersection of two disjoint intervals is the empty

interval.

empty interval The empty interval, [empty], is the interval with no members. The empty interval

naturally occurs as the intersection of two disjoint intervals. For example,

[2, 3] ∩ [4,5] = [empty].

empty set The empty set, ∅, is the set with no members. The empty set naturally occurs as

the intersection of two disjoint sets. For example, {2, 3} ∩ {4, 5} = ∅.

ev(SRIC) The notation ev(SRIC) is used to denote the external value defined by a SRIC.

For example, ev("[0.1]") = 1/10, in spite of the fact that a non-degenerate

interval approximation of 0.1 must be used, because the constant 0.1 is not

machine representable. See also string representation of an interval constant
(SRIC).

exception In the IEEE 754 floating-point standard, an exception occurs when an attempt is

made to perform an undefined operation, such as division by zero.

exchangeable
expression Two expressions are exchangeable if they are containment-set equivalent (their

containment sets are everywhere identical).

extended interval The term extended interval refers to intervals whose endpoints can be extended

real numbers, including -∞ and +∞. For completeness, the empty interval is

also included in the set of extended real intervals.

external
representation The external representation of a C++ data item is the character string used to

define it during input data conversion, or the character string used to display it

after output data conversion.

external value The external value of a SRIC is the mathematical value defined by the SRIC. The

external value of a SRIC might not be the same as the SRIC’s internal

approximation, which, in C++, is the only defined value of the SRIC. See also

ev(SRIC).
Glossary 79

f(set) The notation, f(set), is used to symbolically represent the containment set of an

expression evaluated over a set of arguments. For example, for the expression,

f(x, y) = xy, the containment constraint that the interval expression [0] × [+∞]

must satisfy is

[0] × [+∞] ⊇ = [-∞, +∞].

hull See interval hull.

infimum
(plural, infima) The infimum of a set of numbers is the set’s greatest lower bound. This is either

the smallest number in the set or the largest number that is less than all the

numbers in the set. The infimum, inf([a, b]), of the interval constant [a, b] is a.

interval algorithm An interval algorithm is a sequence of operations used to compute an interval

result.

internal
approximation In the C++ interval class, an interval constant is represented using a string. The

string representation of an interval constant (or SRIC) has an internal

approximation, which is the sharp internal approximation of the SRIC’s

external value. The external value is an interval constant. See also string
representation of an interval constant (SRIC)

interval arithmetic Interval arithmetic is the system of arithmetic used to compute with intervals.

interval box An interval box is a parallelepiped with sides parallel to the n-dimensional

Cartesian coordinate axes. An interval box is conveniently represented using

an n-dimensional interval vector, X = (X1, ..., Xn)T.

interval constant An interval constant is the closed connected set: [a, b] ={z | a ≤ z ≤ b} defined by

the pair of numbers, a ≤ b.

interval constant’s
external value See external value.

interval
constant’s internal

approximation See internal approximation.

interval hull The interval hull function, , on a pair of intervals ,

is the smallest interval that contains both X and Y (also represented as

). For example,

[2, 3] [5, 6] = [2, 6].

interval -specific
function In the C++ interval class, an interval -specific function is an interval function

that is not an interval version of a standard C++ function. For example, wid ,

mid , inf , and sup , are interval -specific functions.

interval width Interval width, w([a, b]) = b - a.

∪ X x x,[] Yand y y,[]= =

X Y∪()inf X Y∪()sup,[]

∪

80 C++ Interval Arithmetic Programming Reference • July 2001

left endpoint The left endpoint of an interval is the same as its infimum or lower bound.

literal constant No literal constant construct for user-defined objects is provided in C++

classes. Therefore, a string representation of a literal constant (or SRIC) is used

instead. See also string representation of an interval constant (SRIC).

lower bound See infimum (plural, infima).

mantissa When written in scientific notation, a number consists of a mantissa or

significand and an exponent power of 10.

multiple-use expression
(MUE) A multiple-use expression (MUE) is an expression in which at least one

independent variable appears more than once.

narrow-width
interval Let the interval [a, b] be an approximation of the value . If

w[a, b] = b - a, is small, [a, b] is a narrow-width interval. The narrower the width

of the interval [a, b], the more accurately [a, b] approximates ν. See also sharp
interval result.

opaque data type An opaque data type leaves the structure of internal approximations unspecified.

interval data items are opaque. Therefore, programmers cannot count on

interval data items being internally represented in any particular way. The

intrinsic functions inf and sup provide access to the components of an

interval. The interval constructor can be used to manually construct any

valid interval.

point A point (as opposed to an interval), is a number. A point in n-dimensional

space, is represented using an n-dimensional vector, x = (x1, ... , xn)T. A point

and a degenerate interval, or interval vector, can be thought of as the same.

Strictly, any interval is a set, the elements of which are points.

possibly true relational
functions See relational functions: possibly true.

quality of
implementation Quality of implementation, is a phrase used to characterize properties of

compiler support for intervals. Narrow width is a new quality of

implementation opportunity provided by intrinsic compiler support for

interval data types.

radix conversion Radix conversion is the process of converting back and forth between external

decimal numbers and internal binary numbers. Radix conversion takes place in

formatted and list-directed input/output. Because the same numbers are not

always representable in the binary and decimal number systems, guaranteeing

containment requires directed rounding during radix conversion.

ν a b,[]∈
Glossary 81

relational functions:
certainly true The certainly true relational functions are {clt , cle , ceq , cne , cge , cgt }.

Certainly true relational functions are true if the relation in question is true for

all elements in the operand intervals. That is cop ([a, b], [c, d]) = true if

op(x, y) = true for all .

For example, clt ([a, b], [c, d]) evaluates to true if b < c.

relational functions:
possibly true The possibly true relational functions are {plt , ple , peq , pne , pge , pgt }. Possibly

true relational functions are true if the relation in question is true for any

elements in operand intervals. For example, plt([a, b], [c, d]) if a < d.

relational functions:
set The set relational functions are {slt , sle , seq , sne , sge , sgt }. Set relational

functions are true if the relation in question is true for the endpoints of the

intervals. For example, seq([a, b], [c, d]) evaluates to true if (a = c) and (b = d).

right endpoint See supremum (plural, suprema).

set theoretic Set theoretic is the means of or pertaining to the algebra of sets.

sharp interval result A sharp interval result has a width that is as narrow as possible. A sharp interval

result is equal to the hull of the expression’s containment. Given the limitations

imposed by a particular finite precision arithmetic, a sharp interval result is the

narrowest possible finite precision interval that contains the expression’s

containment set.

single-number
input/output Single-number input/output, uses the single-number external representation for

an interval, in which the interval [-1, +1]uld is implicitly added to the last

displayed digit. The subscript uld is an acronym for unit in the last digit. For

example 0.12300 represents the interval 0.12300 + [-1, +1]uld = [0.12299,

0.12301].

single-number
interval data

conversion Single-number interval data conversion is used to read and display external

intervals using the single-number representation. See single-number
input/output.

x a b,[]∈ andy c d,[]∈
82 C++ Interval Arithmetic Programming Reference • July 2001

single-use expression
(SUE) A single-use expression (SUE) is an expression in which each variable only

occurs once. For example

is a single use expression, whereas

is not.

string representation of
an interval constant

(SRIC) In C++, it is possible to define variables of a class type, but not literal

constants. So that a literal interval constant can be represented, the C++

interval class uses a string to represent an interval constant. A string

representation of an interval constant (SRIC), such as "[0.1,0.2]" , is the

character string that represents a literal interval constant. See Section 2.1.1

“String Representation of an Interval Constant (SRIC)” on page 30.

SRIC’s external value In the C++ interval class, a literal interval constant is represented using a

string. This is referred to as the string representation of an interval constant, or

SRIC. The external value of a SRIC, or ev(SRIC), is the exact mathematical

value the SRIC represents. For example, the SRIC "[0.1]" has the external

value: ev("[0.1]") = 1/10. See also string representation of an interval
constant (SRIC).

SRIC’s internal
approximation In the C++ interval class, a literal interval constant is represented using a

string. This is referred to as the string representation of an interval constant, or

SRIC. The internal approximation of a SRIC, is the sharp machine

representable interval that contains the SRIC’s external value. For example, the

internal approximation of the SRIC "[0.1]" is the narrowest possible machine

representable interval that contains the SRIC’s external value, which, in this

case, is ev("[0.1]") = 1/10. See also string representation of an interval
constant (SRIC).

supremum
(plural, suprema) The supremum of a set of numbers is the set’s least upper bound, which is

either the largest number in the set or the smallest number that is greater than

all the numbers in the set. The supremum, sup([a, b]), of the interval constant

[a, b] is b.

unit in the last digit
(uld) In single number input/output, one unit in the last digit (uld) is added to and

subtracted from the last displayed digit to implicitly construct an interval.

1

1 Y
X
----+

X
X Y+

Glossary 83

unit in the last place
(ulp) One unit in the last place (ulp) of an internal machine number is the smallest

possible increment or decrement that can be made using the machine’s

arithmetic. Therefore, if the width of a computed interval is 1-ulp, this is the

narrowest possible non-degenerate interval with a given type.

upper bound See supremum (plural, suprema).

valid interval result A valid interval result, [a, b] must satisfy two requirements:

■ a ≤ b

■ [a, b] must not violate the containment constraint
84 C++ Interval Arithmetic Programming Reference • July 2001

Index
A
acos , 72

affirmative relation, 77

affirmative relational operators, 77

anti-affirmative relation, 77

anti-affirmative relational operator, 77

arithmetic expressions, 24

arithmetic operators, 41

formulas, 42

asin , 72

assignment statement, 77

atan , 72

atan2 , 72

indeterminate forms, 67

B
base conversion, 24, 65

C
ceiling , 73

ceq , 41

certainly relational operators, 41, 60

certainly-relation, 54

cge , 41

cgt , 41

character set notation

constants, 29

cle , 41

closed interval, 77

closed mathematical system, 13, 77

clt , 41

cne , 41

compact set, 78

compilers, accessing, 6

composite expression, 78

constants

character set notation, 29

literal, 29

strict interval expression processing, 30

containment constraint, 78

containment failure, 12, 78

containment set, 42, 78

containment set equivalent, 78

containment-set closure identity, 42

cos , 72

cosh , 72

D
data

representing intervals, 18

dbx , 28

debugging tools

dbx , 28

default INTEGER KTPV, 17

degenerate interval, 30, 79

representation, 18

directed rounding, 30, 42, 79

disjoint , 41, 51

disjoint interval, 79

disjoint set relation, 51

display format

inf, sup, 23
Index 85

documentation index, 7

documentation, accessing, 7

E
element set relation, 51

empty interval, 24, 79

empty set, 79

ev(literal_constant), 79

exceptions, 79

exchangeable expression, 79

exp , 71

expressions

composite, 78

interval , 40

extended interval, 79

external representation, 79

external value, 79

F
f(set), 80

fabs , 71

floor , 73

fmod , 71

H
hull

see interval hull

I
implementation quality, 11

in , 41, 51

in_interior , 41, 52

indeterminate forms

atan2 , 67

power operator, 46

inf , 73

inf, sup display format, 23

infima, 21

infimum, 30, 80

input/output

entering interval data, 18

single number, 13, 18, 21

single-number, 65

interior set relation, 52

internal approximation, 33, 80

intersect , 40, 50

intersection set theoretic operator, 40, 50

interval
expressions, 40

interval algorithm, 80

interval arithmetic, 11, 80

interval arithmetic functions

fabs , 71

fmod , 71

maximum, 69, 71

minimum , 69, 71

interval arithmetic operations, 13

interval box, 80

interval constants, 80

external value, 80

internal approximation, 33, 80

strict interval expression processing, 30

interval data type, 13

interval expressions, 40

interval hull, 40, 80

interval hull set theoretic operator, 50

interval input/output, 18

interval mathematical functions

exp , 71

log , 71

log10 , 71

sqrt , 71

interval order relations, 54

certainly, 54

definitions, 58

possibly, 54

set, 54

interval relational operators, 13, 41

ceq , 41

cge , 41

cgt , 41

cle , 41

clt , 41

cne , 41

disjoint , 41

in , 41

in_interior , 41

peq , 41

pgt , 41

ple , 41

plt , 41
86 C++ Interval Arithmetic Programming Reference • July 2001

pne , 41

proper_subset , 41

proper_superset , 41

seq , 41, 55

sge , 41

sgt , 41

sle , 41

slt , 41

sne , 41

subset , 41

superset , 41

interval resources

code examples, 3

email, 3

papers, 2

web sites, 3

interval - specific operators, 13

interval support

performance, 13

interval support goals, 11

interval trigonometric functions

acos , 72

asin , 72

atan , 72

atan2 , 72

cos , 72

cosh , 72

sin , 72

sinh , 72

tan , 72

tanh , 72

interval type conversion functions

interval , 70

interval width, 80

narrow, 11, 12, 81

related to base conversion, 65

sharp, 12

interval_hull , 40, 50

intervals

goals of compiler support, 11

input/output, 18

interval -specific functions, 13, 25, 80

ceiling , 73

floor, 73

inf , 73

isempty , 73

mag, 73

mid , 73

mig , 73

ndigits , 73

sup , 73

wid , 73

intrinsic C++ interval support, 11

intrinsic functions

interval , 25

properties, 70

standard, 26

intrinsic operators, 40

arithmetic, 41

relational, 41

isempty , 73

K
kind type parameter value (KTPV)

default values, 17

L
literal constants, 29, 81

external value, 83

internal approximation, 83

log , 71

log10 , 71

M
mag, 73

man pages, accessing, 5

MANPATH environment variable, setting, 7

mantissa, 81

maximum, 69, 71

mid , 73

mig , 73

minimum , 69, 71

multiple-use expression (MUE), 81

N
narrow intervals, 11, 12, 81

ndigits , 73
Index 87

O
online interval resources, 3

opaque

data type, 81

operators

arithmetic, 41

intrinsic, 40

power, 45

relational, 41

P
PATH environment variable, setting, 5

peq , 41

performance, 13

pgt , 41

ple , 41

plt , 41

pne , 41

point, 81

possibly relational operators, 41, 61

possibly-relation, 54

power operator, 45

indeterminate forms, 46

singularities, 46

proper subset set relation, 52

proper superset set relation, 53

proper_subset , 41, 52

proper_superset , 41, 53

Q
quality of implementation, 11, 81

R
radix conversion, 24, 81

relational operators, 57

certainly true, 82

possibly true, 82

set, 82

S
seq , 41

set relational operators, 41, 58

set relations, 51

disjoint, 51

element, 51

interior, 52

proper subset, 52

proper superset, 53

subset, 53

superset, 53

set theoretic, 82

set theoretic operators, 47

interval hull, 40, 50

interval intersection, 40, 50

set-relations, 54

sge , 41

sgt , 41

sharp intervals, 12, 82

shell prompts, 5

sin , 72

single-number input/output, 13, 21, 65, 82

single-number INTERVAL data conversion, 82

single-number interval format, 18

single-number interval representation

precision, 63

single-use expression

see SUE

singularities

power operator, 46

sinh , 72

sle , 41

slt , 41

sne , 41

Solaris versions supported, 5

sqrt , 71

standard intrinsic functions, 26

subset , 41, 53

subset set relation, 53

SUE, 46, 83

sup , 73

superset , 41, 53

superset set relation, 53

suprema, 21

supremum, 30, 83

T
tan , 72

tanh , 72

typographic conventions, 4
88 C++ Interval Arithmetic Programming Reference • July 2001

U
uld, 18, 83

ulp, 24, 84

unit in last digit

see uld

unit in last place

see ulp

V
valid interval result, 84

W
wid , 73
Index 89

90 C++ Interval Arithmetic Programming Reference • July 2001

	C++ Interval Arithmetic Programming Reference
	Contents
	Tables
	Code Examples
	Before You Begin
	Who Should Use This Book
	How This Book Is Organized
	What Is Not in This Book
	Related Interval References
	Online Resources
	Web Sites
	Email
	Code Examples

	Typographic Conventions
	Shell Prompts
	Supported Platforms
	Accessing Sun WorkShop Development Tools and Man Pages
	Accessing Sun WorkShop Compilers and Tools
	To Determine If You Need to Set Your PATH Environment Variable
	To Set Your PATH Environment Variable to Enable Access to Sun WorkShop Compilers and Tools

	Accessing Sun WorkShop Man Pages
	To Determine If You Need to Set Your MANPATH Environment Variable
	To Set Your MANPATH Environment Variable to Enable Access to Sun WorkShop Man Pages

	Accessing Sun WorkShop Documentation
	Accessing Related Documentation
	Ordering Sun Documentation
	Sending Your Comments

	Using the Interval Arithmetic Library
	1.1 What Is Interval Arithmetic?
	1.2 C++ Interval Support Goal: Implementation Quality
	1.2.1 Quality Interval Code
	1.2.2 Narrow-Width Interval Results
	1.2.3 Rapidly Executing Interval Code
	1.2.4 Easy-to-Use Development Environment
	1.2.5 The C++ Interval Class Compilation Interface
	1.2.5.1 namespace SUNW_interval
	1.2.5.2 Boolean Return Values
	1.2.5.3 Input and Output

	1.3 Writing Interval Code for C++
	1.3.1 Hello Interval World
	1.3.2 interval External Representations
	1.3.3 Interval Declaration and Initialization
	1.3.4 interval Input/Output
	1.3.5 Single-Number Input/Output
	1.3.6 Arithmetic Expressions
	1.3.7 interval-Specific Functions
	1.3.8 Interval Versions of Standard Functions

	1.4 Code Development Tools
	1.4.1 Debugging Support

	C++ Interval Arithmetic Library Reference
	2.1 Character Set Notation
	2.1.1 String Representation of an Interval Constant (SRIC)
	2.1.2 Internal Approximation

	2.2 interval Constructor
	2.2.1 interval Constructor Examples

	2.3 interval Arithmetic Expressions
	2.4 Operators and Functions
	2.4.1 Arithmetic Operators +, –, *, /
	2.4.2 Power Function pow(X,n) and pow(X,Y)

	2.5 Set Theoretic Functions
	2.5.1 Hull: X U Y or interval_hull(X,Y)
	2.5.2 Intersection: X«Y or intersect(X,Y)

	2.6 Set Relations
	2.6.1 Disjoint: X «Y = Æ or disjoint(X,Y)
	2.6.2 Element: r Œ Y or in(r,Y)
	2.6.3 Interior: in_interior(X,Y)
	2.6.4 Proper Subset: X Ã Y or proper_subset(X,Y)
	2.6.5 Proper Superset: X … Y or proper_superset(X,Y)
	2.6.6 Subset: X Õ Y or subset(X,Y)
	2.6.7 Superset: X Y or superset(X,Y)

	2.7 Relational Functions
	2.7.1 Interval Order Relations
	2.7.2 Set Relational Functions
	2.7.2.1 Set-equal: or seq(X,Y)
	2.7.2.2 Set-greater-or-equal: sge(X,Y)
	2.7.2.3 Set-greater: sgt(X,Y)
	2.7.2.4 Set-less-or-equal: sle(X,Y)
	2.7.2.5 Set-less: slt(X,Y)
	2.7.2.6 Set-not-equal: or sne(X,Y)

	2.7.3 Certainly Relational Functions
	2.7.4 Possibly Relational Functions

	2.8 Input and Output
	2.8.1 Input
	2.8.2 Single�Number Output
	2.8.3 Single�Number Input/Output and Base Conversions

	2.9 Mathematical Functions
	2.9.1 Inverse Tangent Function atan2(Y,X)
	2.9.2 Maximum: maximum(X1,X2)
	2.9.3 Minimum: minimum(X1,X2)
	2.9.4 Functions That Accept Interval Arguments

	2.10 Interval Types and the Standard Template Library
	2.11 References

	Glossary
	Index

