Standard C++ Library
Copyright 1998, Rogue Wave Software, Inc.
NAME
push_heap
- Places a new element into a heap.
SYNOPSIS
#include <algorithm>
template <class RandomAccessIterator>
void
push_heap(RandomAccessIterator first,
RandomAccessIterator last);
template <class RandomAccessIterator, class Compare>
void
push_heap(RandomAccessIterator first,
RandomAccessIterator last, Compare comp);
DESCRIPTION
A heap is a particular organization of elements in a range
between two random access iterators [a, b). Its two key pro-
perties are:
1. *a is the largest element in the range.
2. *a may be removed by the pop_heap algorithm, or a new
element may be added by the push_heap algorithm, in
O(logN) time.
These properties make heaps useful as priority queues.
The push_heap algorithms uses the less than (<) operator as
the default comparison. As with all of the heap manipulation
algorithms, an alternate comparison function can be speci-
fied.
The push_heap algorithm is used to add a new element to the
heap. First, a new element for the heap is added to the end
of a range. (For example, you can use the vector or deque
member function push_back()to add the element to the end of
either of those containers.) The push_heap algorithm assumes
that the range [first, last - 1) is a valid heap. Then it
properly positions the element in the location last - 1 into
its proper position in the heap, resulting in a heap over
the range [first, last).
Note that the push_heap algorithm does not place an element
into the heap's underlying container. You must user another
function to add the element to the end of the container
before applying push_heap.
COMPLEXITY
For push_heap at most log(last - first) comparisons are per-
formed.
EXAMPLE
//
// heap_ops.cpp
//
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
int main(void)
{
int d1[4] = {1,2,3,4};
int d2[4] = {1,3,2,4};
// Set up two vectors
vector<int> v1(d1,d1 + 4), v2(d2,d2 + 4);
// Make heaps
make_heap(v1.begin(),v1.end());
make_heap(v2.begin(),v2.end(),less<int>());
// v1 = (4,x,y,z) and v2 = (4,x,y,z)
// Note that x, y and z represent the remaining
// values in the container (other than 4).
// The definition of the heap and heap operations
// does not require any particular ordering
// of these values.
// Copy both vectors to cout
ostream_iterator<int,char> out(cout," ");
copy(v1.begin(),v1.end(),out);
cout << endl;
copy(v2.begin(),v2.end(),out);
cout << endl;
// Now let's pop
pop_heap(v1.begin(),v1.end());
pop_heap(v2.begin(),v2.end(),less<int>());
// v1 = (3,x,y,4) and v2 = (3,x,y,4)
// Copy both vectors to cout
copy(v1.begin(),v1.end(),out);
cout << endl;
copy(v2.begin(),v2.end(),out);
cout << endl;
// And push
push_heap(v1.begin(),v1.end());
push_heap(v2.begin(),v2.end(),less<int>());
// v1 = (4,x,y,z) and v2 = (4,x,y,z)
// Copy both vectors to cout
copy(v1.begin(),v1.end(),out);
cout << endl;
copy(v2.begin(),v2.end(),out);
cout << endl;
// Now sort those heaps
sort_heap(v1.begin(),v1.end());
sort_heap(v2.begin(),v2.end(),less<int>());
// v1 = v2 = (1,2,3,4)
// Copy both vectors to cout
copy(v1.begin(),v1.end(),out);
cout << endl;
copy(v2.begin(),v2.end(),out);
cout << endl;
return 0;
}
Program Output
4 2 3 1
4 3 2 1
3 2 1 4
3 1 2 4
4 3 1 2
4 3 2 1
1 2 3 4
1 2 3 4
WARNINGS
If your compiler does not support default template parame-
ters, you always need to supply the Allocator template argu-
ment. For instance, you need to write:
vector<int, allocator<int> >
instead of:
vector<int>
If your compiler does not support namespaces, then you do
not need the using declaration for std.
SEE ALSO
make_heap, pop_heap, sort_heap