Man Page multiset.3



                       Standard C++ Library
             Copyright 1998, Rogue Wave Software, Inc.



NAME

     multiset

      - An associative  container  that  allows  fast  access  to
     stored  key  values. Storage of duplicate keys is allowed. A
     multiset supports bidirectional iterators.





SYNOPSIS

     #include <set>
     template <class Key, class Compare = less<Key>,
              class Allocator = allocator<Key> >
     class multiset;





DESCRIPTION

     multiset_<Key,_Compare,_Allocator>_allows  fast  access   to
     stored  key values. The default operation for key comparison
     is the < operator. Insertion of duplicate  keys  is  allowed
     with a multiset.

     multiset uses bidirectional iterators that point to a stored
     key.

     Any type used for the template parameter  Key  must  include
     the  following (where T is the type, t is a value of T and u
     is a const value of T):

     Copy constructors   T(t) and T(u)



     Destructor   t.~T()



     Address of   &t and &u yielding T* and const T* respectively



     Assignment   t = a where a is a (possibly const) value of T



     The type  used  for  the  Compare  template  parameter  must
     satisfy the requirements for binary functions.





INTERFACE

     template <class Key, class Compare = less<Key>,
              class Allocator = allocator<Key> >
     class multiset {

     public:

     // typedefs

       typedef Key key_type;
       typedef Key value_type;
       typedef Compare key_compare;
       typedef Compare value_compare;
       typedef Allocator allocator_type;

       typedef typename
               Allocator::reference        reference;
       typedef typename
               Allocator::const_reference  const_reference;

       class iterator;
       class const_iterator;

       typedef typename
               Allocator::size_type        size_type;
       typedef typename
               Allocator::difference_type  difference_type;

       typedef typename std::reverse_iterator<iterator>
                             reverse_iterator;
       typedef typename std::reverse_iterator<const_iterator>
                             const_reverse_iterator;

     // Construct/Copy/Destroy

       explicit multiset (const Compare& = Compare(),
                          const Allocator& = Allocator());
       template <class InputIterator>
        multiset (InputIterator, InputIterator,
                  const Compare& = Compare(),
                  const Allocator& = Allocator());
       multiset (const multiset<Key, Compare, Allocator>&);
        ~multiset ();
       multiset<Key, Compare, Allocator>&
                operator= (const multiset<Key,
                           Compare, Allocator>&);

     // Iterators

       iterator begin ();
       const_iterator begin () const;
       iterator end ();
       const_iterator end () const;
       reverse_iterator rbegin ();
       const_reverse_iterator rbegin () const;
       reverse_iterator rend ();
       const_reverse_iterator rend () const;

     // Capacity

       bool empty () const;
       size_type size () const;
       size_type max_size () const;

     // Modifiers

       iterator insert (const value_type&);
       iterator insert (iterator, const value_type&);
       template <class InputIterator>
        void insert (InputIterator, InputIterator);

       void erase (iterator);
       size_type erase (const key_type&);
       void erase (iterator, iterator);
       void swap (multiset<Key, Compare, Allocator>&);
       void clear ();

     // Observers

       key_compare key_comp () const;
       value_compare value_comp () const;

     // Multiset operations

       iterator find (const key_type&) const;
       size_type count (const key_type&) const;
       iterator lower_bound (const key_type&) const;
       iterator upper_bound (const key_type&) const;
       pair<iterator, iterator> equal_range
            (const key_type&) const;
        };

     // Non-member Operators

     template <class Key, class Compare, class Allocator>
     bool operator==
         (const multiset<Key, Compare, Allocator>&,
         const multiset<Key, Compare, Allocator>&);

     template <class Key, class Compare, class Allocator>
     bool operator!=
         (const multiset<Key, Compare, Allocator>&,
         const multiset<Key, Compare, Allocator>&);

     template <class Key, class Compare, class Allocator>
     bool operator<
         (const multiset<Key, Compare, Allocator>&,
         const multiset<Key, Compare, Allocator>&);

     template <class Key, class Compare, class Allocator>
     bool operator>
         (const multiset<Key, Compare, Allocator>&,
         const multiset<Key, Compare, Allocator>&);

     template <class Key, class Compare, class Allocator>
     bool operator<=
         (const multiset<Key, Compare, Allocator>&,
         const multiset<Key, Compare, Allocator>&);

     template <class Key, class Compare, class Allocator>
     bool operator>=
         (const multiset<Key, Compare, Allocator>&,
         const multiset<Key, Compare, Allocator>&);

     // Specialized Algorithms

     template <class Key, class Compare, class Allocator>
     void swap ( multiset<Key, Compare, Allocator>&,
                 multiset<Key, Compare, Allocator>&);





CONSTRUCTORS

     explicit multiset(const Compare& comp = Compare(),
                       const Allocator& alloc = Allocator());


        Constructs an empty multiset that uses the optional rela-
        tion comp to order keys, if it is supplied, and the allo-
        cator alloc for all storage management.



     template <class InputIterator>
     multiset(InputIterator first, InputIterator last,
              const Compare& = Compare(),
              const Allocator& = Allocator());


        Constructs a multiset  containing  values  in  the  range
        [first, last).



     multiset(const multiset<Key, Compare, Allocator>& x);


        Creates a new multiset by copying all key values from x.






DESTRUCTORS

     ~multiset();


        Releases any allocated memory for this multiset.






ASSIGNMENT OPERATORS

     multiset<Key, Compare, Allocator>&
     operator=(const multiset<Key, Compare, Allocator>& x);


        Replaces the contents of *this with a copy  of  the  con-
        tents of x.






ALLOCATORS

     allocator_type
     get_allocator() const;


        Returns a copy of the allocator used by self for  storage
        management.






ITERATORS

     iterator
     begin();


        Returns an iterator pointing to the first element  stored
        in  the  multiset.  "First"  is defined by the multiset's
        comparison operator, Compare.



     const_iterator
     begin();


        Returns a const_iterator pointing to  the  first  element
        stored in the multiset.



     iterator
     end();


        Returns an iterator pointing to the last  element  stored
        in the multiset (in other words, the off-the-end value).



     const_iterator
     end();


        Returns a const_iterator pointing  to  the  last  element
        stored  in  the multiset (in other words, the off-the-end
        value).



     reverse_iterator
     rbegin();


        Returns a reverse_iterator pointing to the first  element
        stored  in  the  multiset.  "First"  is  defined  by  the
        multiset's comparison operator, Compare.



     const_reverse_iterator
     rbegin();


        Returns a const_reverse_iterator pointing  to  the  first
        element stored in the multiset.


     reverse_iterator
     rend();


        Returns a reverse_iterator pointing to the  last  element
        stored  in  the multiset (in other words, the off-the-end
        value).



     const_reverse_iterator
     rend();


        Returns a const_reverse_iterator  pointing  to  the  last
        element  stored in the multiset (in other words, the off-
        the-end value).






MEMBER FUNCTIONS

     void
     clear();


        Erases all elements from the self.



     size_type
     count(const key_type& x) const;


        Returns the number of elements in the multiset  with  the
        key value x.



     bool
     empty() const;


        Returns true if the multiset is empty, false otherwise.



     pair<iterator,iterator>
     equal_range(const key_type& x)const;


        Returns the pair (lower_bound(x), upper_bound(x)).



     size_type
     erase(const key_type& x);


        Deletes all elements with the key value x from  the  mul-
        tiset,  if  any exist. Returns the number of deleted ele-
        ments.



     void
     erase(iterator position);


        Deletes the multiset element pointed to by  the  iterator
        position.  Returns  an  iterator  pointing to the element
        following the deleted element, or end(), if  the  deleted
        item was the last one in this list.



     void
     erase(iterator first, iterator last);


        If the iterators first and last point to  the  same  mul-
        tiset  and  last is reachable from first, all elements in
        the range (first, last) are deleted  from  the  multiset.
        Returns an iterator pointing to the element following the
        last deleted element or end(), if there were no  elements
        after the deleted range.



     iterator
     find(const key_type& x) const;


        Searches the multiset for a key value x  and  returns  an
        iterator  to  that key if it is found. If such a value is
        not found, the iterator end() is returned.



     iterator
     insert(const value_type& x);
     iterator
     insert(iterator position, const value_type& x);
        x is inserted into the multiset. A position may  be  sup-
        plied  as  a hint regarding where to do the insertion. If
        the insertion is done right after position, then it takes
        amortized  constant  time.  Otherwise,  it takes O(log N)
        time.



     template <class InputIterator>
     void
     insert(InputIterator first, InputIterator last);


        Copies of each element in the  range  [first,  last)  are
        inserted  into  the  multiset. This insert takes approxi-
        mately O(N*log(size()+N)) time.



     key_compare
     key_comp() const;


        Returns a function object capable of comparing key values
        using  the  comparison operation, Compare, of the current
        multiset.



     iterator
     lower_bound(const key_type& x) const;


        Returns an iterator to the first  element  whose  key  is
        greater  than  or  equal to x. If no such element exists,
        end() is returned.



     size_type
     max_size() const;


        Returns  the  maximum  possible  size  of  the   multiset
        size_type.



     size_type
     size() const;


        Returns the number of elements in the multiset.



     void
     swap(multiset<Key, Compare, Allocator>& x);


        Swaps the contents of the multiset  x  with  the  current
        multiset, *this.



     iterator
     upper_bound(const key_type& x) const;


        Returns an iterator to the first  element  whose  key  is
        smaller  than  or  equal to x. If no such element exists,
        then end() is returned.



     value_compare
     value_comp() const;


        Returns a function object capable of comparing key values
        using  the  comparison operation, Compare, of the current
        multiset.






NON-MEMBER OPERATORS

     template <class Key, class Compare, class Allocator>
     operator==(const multiset<Key, Compare, Allocator>& x,
                const multiset<Key, Compare, Allocator>& y);


        Returns true if all elements in x are element-wise  equal
        to all elements in y, using (T::operator==). Otherwise it
        returns false.



     template <class Key, class Compare, class Allocator>
     operator!=(const multiset<Key, Compare, Allocator>& x,
                const multiset<Key, Compare, Allocator>& y);


        Returns !(x==y).



     template <class Key, class Compare, class Allocator>
     operator<(const multiset<Key, Compare, Allocator>& x,
               const multiset<Key, Compare, Allocator>& y);


        Returns true if x is lexicographically less than y.  Oth-
        erwise, it returns false.



     template <class Key, class Compare, class Allocator>
     operator>(const multiset<Key, Compare, Allocator>& x,
               const multiset<Key, Compare, Allocator>& y);


        Returns y < x.



     template <class Key, class Compare, class Allocator>
     operator<=(const multiset<Key, Compare, Allocator>& x,
               const multiset<Key, Compare, Allocator>& y);


        Returns !(y < x).



     template <class Key, class Compare, class Allocator>
     operator>=(const multiset<Key, Compare, Allocator>& x,
               const multiset<Key, Compare, Allocator>& y);


        Returns !(x < y).






SPECIALIZED ALGORITHMS

     template <class Key, class Compare, class Allocator>
     void swap(multiset<Key,Compare,Allocator>& a,
               multiset<Key,Compare,Allocator>&b);


        Swaps the contents of a and b.



EXAMPLE

     //
     // multiset.cpp
     //
     #include <set>
     #include <iostream>
     using namespace std;

     typedef multiset<int, less<int>, allocator> set_type;

     ostream& operator<<(ostream& out, const set_type& s)
      {
       copy(s.begin(),s.end(),
         ostream_iterator<set_type::value_type,char>(cout," "));
       return out;
      }


     int main(void)
      {
        // create a multiset of ints
       set_type  si;
       int  i;

       for (int j = 0; j < 2; j++)
        {
         for(i = 0; i < 10; ++i) {
            // insert values with a hint
           si.insert(si.begin(), i);
          }
        }

        // print out the multiset
       cout << si << endl;

        // Make another int multiset and an empty multiset
       set_type si2, siResult;
       for (i = 0; i < 10; i++)
          si2.insert(i+5);
       cout << si2 << endl;

        // Try a couple of set algorithms
       set_union(si.begin(),si.end(),si2.begin(),si2.end(),
              inserter(siResult,siResult.begin()));
       cout << "Union:" << endl << siResult << endl;

       siResult.erase(siResult.begin(),siResult.end());
       set_intersection(si.begin(),si.end(),
              si2.begin(),si2.end(),
              inserter(siResult,siResult.begin()));
       cout << "Intersection:" << endl << siResult << endl;

       return 0;
      }

     Program Output




     0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
     5 6 7 8 9 10 11 12 13 14
     Union:
     0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 13 14
     Intersection:
     5 6 7 8 9





WARNINGS

     Member  function  templates  are  used  in  all   containers
     included  in  the  Standard  Template Library. An example of
     this        feature        is        the         constructor
     for_multiset<Key,_Compare,_Allocator>,  which takes two tem-
     platized iterators:


     template <class InputIterator>
     multiset (InputIterator, InputIterator,
              const Compare& = Compare(),
              const Allocator& = Allocator());

     multiset also has an insert function  of  this  type.  These
     functions,  when  not  restricted  by  compiler limitations,
     allow you to use any type of input  iterator  as  arguments.
     For  compilers  that do not support this feature, substitute
     functions allow you to use an  iterator  obtained  from  the
     same  type  of container as the one you are constructing (or
     calling a member function on). You can also use a pointer to
     the type of element you have in the container.

     For example, if your compiler does not support member  func-
     tion  templates, you can construct a multiset in the follow-
     ing two ways:


     int intarray[10];
     multiset<int> first_multiset(intarray, intarray +10);
     multiset<int> second_multiset(first_multiset.begin(),
                  first_multiset.end());

     but not this way:

     multiset<long>
     long_multiset(first_multiset.begin(),first_multiset.end());

     since the long_multiset and first_multiset are not the  same
     type.

     Also, many compilers do not support default  template  argu-
     ments.  If  your compiler is one of these you always need to
     supply the Compare template argument and the Allocator  tem-
     plate argument. For instance, you have to write:

     multiset<int, less<int>, allocator<int> >

     instead of:

     multiset<int>

     If your compiler does not support namespaces,  then  you  do
     not need the using declaration for std.





SEE ALSO

     allocator, Containers, Iterators, set