Man Page multimap.3



                       Standard C++ Library
             Copyright 1998, Rogue Wave Software, Inc.



NAME

     multimap

      - An associative container that  gives  access  to  non-key
     values  using  keys.  multimap  keys  are not required to be
     unique. A multimap supports bidirectional iterators.





SYNOPSIS

     #include <map>
     template <class Key, class T, class Compare = less<Key>,
              class Allocator = allocator<pair<const Key, T>> >
     class multimap;





DESCRIPTION

     multimap_<Key_,T,_Compare,_Allocator> gives fast  access  to
     stored  values  of  type  T that are indexed by keys of type
     Key. The default operation  for  key  comparison  is  the  <
     operator. Unlike map, multimap allows insertion of duplicate
     keys.

     multimap uses  bidirectional  iterators  that  point  to  an
     instance  of pair<const Key x, T y> where x is the key and y
     is the stored value associated with that key.   The  defini-
     tion  of  multimap  includes  a  typedef to this pair called
     value_type.

     The types used for both the template parameters  Key  and  T
     must  include  the  following  (where  T is the type, t is a
     value of T and u is a const value of T):

     Copy constructors   T(t) and T(u)



     Destructor   t.~T()



     Address of   &t and &u yielding T* and const T* respectively



     Assignment   t = a where a is a (possibly const) value of T



     The type  used  for  the  Compare  template  parameter  must
     satisfy the requirements for binary functions.





INTERFACE

     template <class Key, class T, class Compare = less<Key>,
              class Allocator = allocator<pair<const Key, T>> >
     class multimap {

     public:

     // types

       typedef Key key_type;
       typedef T mapped_type;
       typedef pair<const Key, T> value_type;
       typedef Compare key_compare;
       typedef Allocator allocator_type;


       typedef typename
               Allocator::reference        reference;
       typedef typename
               Allocator::const_reference  const_reference;

       class iterator;
       class const_iterator;

       typedef typename
               Allocator::size_type        size_type;
       typedef typename
               Allocator::difference_type  difference_type;

       typedef typename std::reverse_iterator<iterator>
                             reverse_iterator;
       typedef typename std::reverse_iterator<const_iterator>
                             const_reverse_iterator;


     class value_compare
         : public binary_function<value_type, value_type, bool>

         {
         friend class multimap<Key, T, Compare, Allocator>;

         protected :
           Compare comp;
           value_compare (Compare C) : comp(c) {}
         public :
           bool operator() (const value_type&,
                            const value_type&) const;
         };

     // Construct/Copy/Destroy

       explicit multimap (const Compare& = Compare(),
                          const Allocator& =
                          Allocator());
       template <class InputIterator>
        multimap (InputIterator, InputIterator,
                  const Compare& = Compare(),
                  const Allocator& = Allocator());
       multimap (const multimap<Key, T, Compare, Allocator>&);
        ~multimap ();
       multimap<Key, T, Compare, Allocator>& operator=
            (const multimap<Key, T, Compare, Allocator>&);
       allocator_type get_allocator () const;

     // Iterators

       iterator begin ();
       const_iterator begin () const;
       iterator end ();
       const_iterator end () const;
       reverse_iterator rbegin ();
       const_reverse_iterator rbegin () const;
       reverse_iterator rend ();
       const_reverse_iterator rend () const;

     // Capacity

       bool empty () const;
       size_type size () const;
       size_type max_size () const;

     // Modifiers

       iterator insert (const value_type&);
       iterator insert (iterator, const value_type&);
       template <class InputIterator>
        void insert (InputIterator, InputIterator);

       void erase (iterator);
       size_type erase (const key_type&);
       void erase (iterator, iterator);
       void swap (multimap<Key, T, Compare, Allocator>&);
       void clear ();

     // Observers

       key_compare key_comp () const;
       value_compare value_comp () const;

     // Multimap operations

       iterator find (const key_type&);
       const_iterator find (const key_type&) const;
       size_type count (const key_type&) const;

       iterator lower_bound (const key_type&);
       const_iterator lower_bound (const key_type&) const;
       iterator upper_bound (const key_type&);
       const_iterator upper_bound (const key_type&) const;
       pair<iterator, iterator> equal_range (const key_type&);
       pair<const_iterator, const_iterator>
         equal_range (const key_type&) const;
     };
     // Non-member Operators

     template <class Key, class T, class Compare,
              class Allocator>
     bool operator== (const multimap<Key, T, Compare,
                      Allocator>&,
                      const multimap<Key, T, Compare,
                      Allocator>&);

     template <class Key, class T, class Compare,
              class Allocator>
     bool operator!= (const multimap<Key, T, Compare,
                      Allocator>&,
                      const multimap<Key, T, Compare,
                      Allocator>&);

     template <class Key, class T, class Compare,
              class Allocator>
     bool operator< (const multimap<Key, T, Compare,
                     Allocator>&,
                     const multimap<Key, T, Compare,
                     Allocator>&);

     template <class Key, class T, class Compare,
              class Allocator>
     bool operator> (const multimap<Key, T, Compare,
                     Allocator>&,
                     const multimap<Key, T, Compare,
                     Allocator>&);

     template <class Key, class T, class Compare,
              class Allocator>
     bool operator<= (const multimap<Key, T, Compare,
                      Allocator>&,
                      const multimap<Key, T, Compare,
                      Allocator>&);

     template <class Key, class T, class Compare,
              class Allocator>
     bool operator>= (const multimap<Key, T, Compare,
                      Allocator>&,
                      const multimap<Key, T, Compare,
                      Allocator>&);

     // Specialized Algorithms

     template <class Key, class T, class Compare,
              class Allocator>
     void swap (multimap<Key, T, Compare, Allocator>&,
                multimap<Key, T, Compare, Allocator>&;





CONSTRUCTORS

     explicit multimap(const Compare& comp = Compare(),
                      const Allocator& alloc = Allocator());


        Constructs an empty multimap that uses the optional rela-
        tion  comp  to order keys and the allocator alloc for all
        storage management.



     template <class InputIterator>
     multimap(InputIterator first,
              InputIterator last,
              const Compare& comp = Compare()
              const Allocator& alloc = Allocator());


        Constructs a multimap  containing  values  in  the  range
        [first,  last).    Creation  of  the new multimap is only
        guaranteed to succeed if the  iterators  first  and  last
        return values of type pair<class Key, class T>.



     multimap(const multimap<Key, T, Compare, Allocator>& x);


        Creates a new multimap by copying all pairs  of  key  and
        value from x.


DESTRUCTORS

     ~multimap();


        Releases any allocated memory for this multimap.






ASSIGNMENT OPERATORS

     multimap<Key, T, Compare, Allocator>&
     operator=(const multimap<Key, T, Compare, Allocator>& x);


        Replaces the contents of *this with a copy  of  the  mul-
        timap x.






ALLOCATORS

     allocator_type
     get_allocator() const;


        Returns a copy of the allocator used by self for  storage
        management.






ITERATORS

     iterator
     begin();


        Returns a bidirectional iterator pointing  to  the  first
        element stored in the multimap. "First" is defined by the
        multimap's comparison operator, Compare.



     const_iterator
     begin() const;


        Returns a const_iterator pointing to  the  first  element
        stored  in  the  multimap.  "First"  is  defined  by  the
        multimap's comparison operator, Compare.

     iterator
     end();


        Returns a bidirectional iterator  pointing  to  the  last
        element  stored in the multimap (in other words, the off-
        the-end value).



     const_iterator
     end() const;


        Returns a const_iterator pointing  to  the  last  element
        stored in the multimap.



     reverse_iterator
     rbegin();


        Returns a reverse_iterator pointing to the first  element
        stored  in  the  multimap.  "First"  is  defined  by  the
        multimap's comparison operator, Compare.



     const_reverse_iterator
     rbegin() const;


        Returns a const_reverse_iterator pointing  to  the  first
        element stored in the multimap.



     reverse_iterator
     rend();


        Returns a reverse_iterator pointing to the  last  element
        stored  in  the multimap (in other words, the off-the-end
        value).



     const_reverse_iterator
     rend() const;


        Returns a const_reverse_iterator  pointing  to  the  last
        element stored in the multimap.






MEMBER FUNCTIONS

     void
     clear();


        Erases all elements from the self.



     size_type
     count(const key_type& x) const;


        Returns the number of elements in the multimap  with  the
        key value x.



     bool
     empty() const;


        Returns true if the multimap is empty, false otherwise.



     pair<iterator,iterator>
     equal_range(const key_type& x);
     pair<const_iterator,const_iterator>
     equal_range(const key_type& x) const;


        Returns the pair (lower_bound(x), upper_bound(x)).



     void
     erase(iterator first, iterator last);


        If the iterators first and last point to  the  same  mul-
        timap  and  last is reachable from first, all elements in
        the range (first, last) are deleted  from  the  multimap.
        Returns an iterator pointing to the element following the
        last deleted element or end(), if there were no  elements
        after the deleted range.



     void
     erase(iterator position);


        Deletes the multimap element pointed to by  the  iterator
        position.  Returns  an  iterator  pointing to the element
        following the deleted element, or end(), if  the  deleted
        item was the last one in this list.



     size_type
     erase(const key_type& x);


        Deletes the elements with the key value x from  the  map,
        if  any exist. Returns the number of deleted elements, or
        0 otherwise.



     iterator
     find(const key_type& x);


        Searches the multimap for a pair with the key value x and
        returns  an iterator to that pair if it is found. If such
        a pair is not found the value end() is returned.



     const_iterator
     find(const key_type& x) const;


        Same as find above but returns a const_iterator.



     iterator
     insert(const value_type& x);
     iterator
     insert(iterator position, const value_type& x);


        x is inserted into the multimap. A position may  be  sup-
        plied  as  a hint regarding where to do the insertion. If
        the insertion is done right after position, then it takes
        amortized  constant  time.  Otherwise  it  takes O(log N)
        time.



     template <class InputIterator>
     void
     insert(InputIterator first, InputIterator last);


        Copies of each element in the  range  [first,  last)  are
        inserted  into the multimap. The iterators first and last
        must return values of type  pair<T1,T2>.  This  operation
        takes approximately O(N*log(size()+N)) time.



     key_compare
     key_comp() const;


        Returns a function object capable of comparing key values
        using  the  comparison operation, Compare, of the current
        multimap.



     iterator
     lower_bound(const key_type& x);


        Returns an iterator to the first multimap  element  whose
        key  is  greater  than  or equal to x. If no such element
        exists, then end() is returned.



     const_iterator
     lower_bound(const key_type& x) const;


        Same as lower_bound above but returns a const_iterator.



     size_type
     max_size() const;


        Returns the maximum possible size of the multimap.


     size_type
     size() const;


        Returns the number of elements in the multimap.



     void
     swap(multimap<Key, T, Compare, Allocator>& x);


        Swaps the contents of the multimap  x  with  the  current
        multimap, *this.



     iterator
     upper_bound(const key_type& x);


        Returns an iterator to the first  element  whose  key  is
        less  than or equal to x. If no such element exists, then
        end() is returned.



     const_iterator
     upper_bound(const key_type& x) const;


        Same as upper_bound above but returns a const_iterator.



     value_compare
     value_comp() const;


        Returns  a   function   object   capable   of   comparing
        value_types (key,value pairs) using the comparison opera-
        tion, Compare, of the current multimap.






NON-MEMBER OPERATORS

     bool
     operator==(const multimap<Key, T, Compare, Allocator>& x,
               const multimap<Key, T, Compare, Allocator>& y);

        Returns true if all elements in x are element-wise  equal
        to all elements in y, using (T::operator==). Otherwise it
        returns false.



     bool
     operator!=(const multimap<Key, T, Compare, Allocator>& x,
               const multimap<Key, T, Compare, Allocator>& y);


        Returns !(x==y).



     bool
     operator<(const multimap<Key, T, Compare, Allocator>& x,
               const multimap<Key, T, Compare, Allocator>& y);


        Returns true if x is lexicographically less than y.  Oth-
        erwise, it returns false.



     bool
     operator>(const multimap<Key, T, Compare, Allocator>& x,
               const multimap<Key, T, Compare, Allocator>& y);


        Returns y < x.



     bool
     operator<=(const multimap<Key, T, Compare, Allocator>& x,
               const multimap<Key, T, Compare, Allocator>& y);


        Returns !(y < x).



     bool
     operator>=(const multimap<Key, T, Compare, Allocator>& x,
               const multimap<Key, T, Compare, Allocator>& y);


        Returns !(x < y).




SPECIALIZED ALGORITHMS

     template<class Key, class T, class Compare, class Allocator>
     void swap(multimap<Key, T, Compare, Allocator>& a,
               multimap<Key, T, Compare, Allocator>& b);


        Swaps the contents of a and b.






EXAMPLE

     //
     // multimap.cpp
     //
      #include <string>
      #include <map>
      #include <iostream>
     using namespace std;

     typedef multimap<int, string, less<int> > months_type;

      // Print out a pair
     template <class First, class Second>
     ostream& operator<<(ostream& out,
                         const pair<First,Second>& p)
      {
       cout << p.second << " has " << p.first << " days";
       return out;
      }

      // Print out a multimap
     ostream& operator<<(ostream& out, months_type l)
      {
       copy(l.begin(),l.end(), ostream_iterator
                  <months_type::value_type,char>(cout,"\n"));
       return out;
      }

     int main(void)
      {
        // create a multimap of months and the number of
        // days in the month
       months_type months;

       typedef months_type::value_type value_type;

        // Put the months in the multimap
       months.insert(value_type(31, string("January")));
       months.insert(value_type(28, string("February")));
       months.insert(value_type(31, string("March")));
       months.insert(value_type(30, string("April")));
       months.insert(value_type(31, string("May")));
       months.insert(value_type(30, string("June")));
       months.insert(value_type(31, string("July")));
       months.insert(value_type(31, string("August")));
       months.insert(value_type(30, string("September")));
       months.insert(value_type(31, string("October")));
       months.insert(value_type(30, string("November")));
       months.insert(value_type(31, string("December")));


        // print out the months
       cout << "All months of the year" << endl << months
             << endl;

        // Find the Months with 30 days
       pair<months_type::iterator,months_type::iterator> p =
              months.equal_range(30);

        // print out the 30 day months
       cout << endl << "Months with 30 days" << endl;
       copy(p.first,p.second,
            ostream_iterator<months_type::value_type,char>
            (cout,"\n"));

       return 0;
      }

     Program Output




     All months of the year
     February has 28 days
     April has 30 days
     June has 30 days
     September has 30 days
     November has 30 days
     January has 31 days
     March has 31 days
     May has 31 days
     July has 31 days
     August has 31 days
     October has 31 days
     December has 31 days

     Months with 30 days
     April has 30 days
     June has 30 days
     September has 30 days
     November has 30 days


WARNINGS

     Member  function  templates  are  used  in  all   containers
     included  in  the  Standard  Template Library. An example of
     this      feature      is      the      constructor      for
     multimap<Key,T,Compare,Allocator> that takes two templatized
     iterators:


     template <class InputIterator>
     multimap (InputIterator, InputIterator,
               const Compare& = Compare(),
               const Allocator& = Allocator());

     multimap also has an insert function  of  this  type.  These
     functions,  when  not  restricted  by  compiler limitations,
     allow you to use any type of input  iterator  as  arguments.
     For  compilers  that do not support this feature, substitute
     functions allow you to use an  iterator  obtained  from  the
     same  type  of container as the one you are constructing (or
     calling a member function on), or you can use a  pointer  to
     the type of element you have in the container.

     For example, if your compiler does not support member  func-
     tion  templates, you can construct a multimap in the follow-
     ing two ways:


     multimap<int,int>::value_type intarray[10];
     multimap<int,int> first_map(intarry, intarray + 10);
     multimap<int,int> second_multimap(first_multimap.begin(),
                      first_multimap.end());

     but not this way:


     multimap<long,long>
     long_multimap(first_multimap.begin(),first_multimap.end());

     since the long_multimap and first_multimap are not the  same
     type.

     Also, many compilers do not support default  template  argu-
     ments.  If  your compiler is one of these you always need to
     supply the Compare template argument and the Allocator  tem-
     plate argument. For instance, you have to write:

     multimap<int, int, less<int>, allocator<int> >

     instead of:

     multimap<int, int>

     If your compiler does not support namespaces,  then  you  do
     not need the using declaration for std.





SEE ALSO

     allocator, Containers, Iterators, map