Man Page map.3



                       Standard C++ Library
             Copyright 1998, Rogue Wave Software, Inc.



NAME

     map

      - An associative container with access  to  non-key  values
     using unique keys. A map supports bidirectional iterators.





SYNOPSIS

     #include <map>
     template <class Key, class T, class Compare = less<Key>
              class Allocator = allocator<pair<const Key, T>> >
     class map;





DESCRIPTION

     map_<Key,_T,_Compare,_Allocator> gives fast access to stored
     values  of  type  T  that are indexed by unique keys of type
     Key. The default operation  for  key  comparison  is  the  <
     operator.

     map has bidirectional iterators that point to an instance of
     pair<const  Key  x,  T  y>  where  x is the key and y is the
     stored value associated with that key. The definition of map
     includes a typedef to this pair called value_type.

     The types used for both the template parameters  Key  and  T
     must  include  the  following  (where  T is the type, t is a
     value of T and u is a const value of T):

     Copy constructors   T(t) and T(u)



     Destructor   t.~T()



     Address of   &t and &u yielding T* and const T* respectively



     Assignment   t = a where a is a (possibly const) value of T


     The type  used  for  the  Compare  template  parameter  must
     satisfy the requirements for binary functions.





INTERFACE

     template <class Key, class T, class Compare = less<Key>
              class Allocator = allocator<pair<const Key, T>> >
     class map {

     public:

     // types

       typedef Key key_type;
       typedef typename Allocator::pointer pointer;
       typedef typename Allocator::const_pointer const_pointer;
       typedef T mapped_type;
       typedef pair<const Key, T> value_type;
       typedef Compare key_compare;
       typedef Allocator allocator_type;

       typedef typename
               Allocator::reference        reference;
       typedef typename
               Allocator::const_reference  const_reference;

       class iterator;
       class const_iterator;

       typedef typename
               Allocator::size_type        size_type;
       typedef typename
               Allocator::difference_type  difference_type;

       typedef typename std::reverse_iterator<iterator>
                             reverse_iterator;
       typedef typename std::reverse_iterator<const_iterator>
                             const_reverse_iterator;

       class value_compare
           : public binary_function<value_type, value_type, bool>
        {
         friend class map<Key, T, Compare, Allocator>;

         protected :
           Compare comp;
           value_compare(Compare c): comp(c) {}
         public :
           bool operator() (const value_type&,
                            const value_type&) const;

        };

     // Construct/Copy/Destroy

       explicit map (const Compare& = Compare(),
                     const Allocator& = Allocator ());
       template <class InputIterator>
        map (InputIterator, InputIterator,
             const Compare& = Compare(),
             const Allocator& = Allocator ());
       map (const map<Key, T, Compare, Allocator>&);
        ~map();
       map<Key, T, Compare, Allocator>&
        operator= (const map<Key, T, Compare, Allocator>&);
       allocator_type get_allocator () const;

     // Iterators

       iterator begin();
       const_iterator begin() const;
       iterator end();
       const_iterator end() const;
       reverse_iterator rbegin();
       const_reverse_iterator rbegin() const;
       reverse_iterator rend();
       const_reverse_iterator rend() const;

     // Capacity

       bool empty() const;
       size_type size() const;
       size_type max_size() const;

     // Element Access

       mapped_type& operator[] (const key_type&);

     // Modifiers

       pair<iterator, bool> insert (const value_type&);
       iterator insert (iterator, const value_type&);
       template <class InputIterator>
        void insert (InputIterator, InputIterator);

       void erase (iterator);
       size_type erase (const key_type&);
       void erase (iterator, iterator);
       void swap (map<Key, T, Compare, Allocator>&);
       void clear();

     // Observers

       key_compare key_comp() const;
       value_compare value_comp() const;

     // Map operations

       iterator find (const key_value&);
       const_iterator find (const key_value&) const;
       size_type count (const key_type&) const;
       iterator lower_bound (const key_type&);
       const_iterator lower_bound (const key_type&) const;
       iterator upper_bound (const key_type&);
       const_iterator upper_bound (const key_type&) const;
       pair<iterator, iterator> equal_range (const key_type&);
       pair<const_iterator, const_iterator>
         equal_range (const key_type&) const;
     };

     // Non-member Map Operators

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
      bool operator== (const map<Key, T, Compare, Allocator>&,
                      const map<Key, T, Compare, Allocator>&);

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
      bool operator!= (const map<Key, T, Compare, Allocator>&,
                      const map<Key, T, Compare, Allocator>&);

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator< (const map<Key, T, Compare, Allocator>&,
                     const map<Key, T, Compare, Allocator>&);

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator> (const map<Key, T, Compare, Allocator>&,
                     const map<Key, T, Compare, Allocator>&);

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator<= (const map<Key, T, Compare, Allocator>&,
                     const map<Key, T, Compare, Allocator>&);

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator>= (const map<Key, T, Compare, Allocator>&,
                     const map<Key, T, Compare, Allocator>&);


     // Specialized Algorithms

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     void swap (map<*Key,T,Compare,Allocator>&,
                map<Key,T,Compare,Allocator>&);





CONSTRUCTORS

     explicit map(const Compare& comp = Compare(),
                 const Allocator& alloc = Allocator());


        Constructs an empty map that uses the  relation  comp  to
        order keys, if it is supplied. The map uses the allocator
        alloc for all storage management.



     template <class InputIterator>
     map(InputIterator first, InputIterator last,
        const Compare& comp = Compare(),
        const Allocator& alloc = Allocator());


        Constructs a map containing values in the  range  [first,
        last).  Creation  of  the  new  map is only guaranteed to
        succeed if the iterators first and last return values  of
        type pair<class Key,       class Value> and all values of
        Key in the range[first, last) are unique.  The  map  uses
        the  relation comp to order keys, and the allocator alloc
        for all storage management.



     map(const map<Key,T,Compare,Allocator>& x);


        Creates a new map by copying all pairs of key  and  value
        from x.






DESTRUCTORS

     ~map();


        Releases any allocated memory for this map.



ALLOCATORS

     allocator_type get_allocator() const;


        Returns a copy of the allocator used by self for  storage
        management.






ITERATORS

     iterator
     begin();


        Returns an iterator pointing to the first element  stored
        in  the  map.  "First" is defined by the map's comparison
        operator, Compare.



     const_iterator
     begin() const;


        Returns a const_iterator pointing to  the  first  element
        stored in the map.



     iterator
     end();


        Returns an iterator pointing to the last  element  stored
        in the map (in other words, the off-the-end value).



     const_iterator
     end() const;


        Returns a const_iterator pointing  to  the  last  element
        stored in the map.



     reverse_iterator
     rbegin();

        Returns a reverse_iterator pointing to the first  element
        stored  in  the map. "First" is defined by the map's com-
        parison operator, Compare.



     const_reverse_iterator
     rbegin() const;


        Returns a const_reverse_iterator pointing  to  the  first
        element stored in the map.



     reverse_iterator
     rend();


        Returns a reverse_iterator pointing to the  last  element
        stored  in  the  map  (in  other  words,  the off-the-end
        value).



     const_reverse_iterator
     rend() const;


        Returns a const_reverse_iterator  pointing  to  the  last
        element stored in the map.






MEMBER OPERATORS

     map<Key, T, Compare, Allocator>&
     operator=(const map<Key, T, Compare, Allocator>& x);


        Replaces the contents of *this with a copy of the map x.



     mapped_type&
     operator[](const key_type& x);


        If an element with the key x exists in the  map,  then  a
        reference  to its associated value is returned. Otherwise
        the pair x,T() is inserted into the map and  a  reference
        to the default object T() is returned.






MEMBER FUNCTIONS

     void
     clear();


        Erases all elements from the self.



     size_type
     count(const key_type& x) const;


        Returns a 1 if a value with the key x exists in the  map.
        Otherwise returns a 0.



     bool
     empty() const;


        Returns true if the map is empty, false otherwise.



     pair<iterator, iterator>
     equal_range (const key_type& x);


        Returns the pair (lower_bound(x), upper_bound(x)).



     pair<const_iterator,const_iterator>
     equal_range (const key_type& x) const;


        Returns the pair (lower_bound(x), upper_bound(x)).



     void
     erase(iterator position);


        Deletes the map element pointed to by the iterator  posi-
        tion.



     void
     erase(iterator first, iterator last);


        If the iterators first and last point to the same map and
        last  is  reachable from first, all elements in the range
        (first, last) are deleted from the map. Returns an itera-
        tor  pointing  to  the element following the last deleted
        element, or end() if there were  no  elements  after  the
        deleted range.



     size_type
     erase(const key_type& x);


        Deletes the element with the key value x from the map, if
        one  exists.  Returns 1 if x existed in the map, 0 other-
        wise.



     iterator
     find(const key_type& x);


        Searches the map for a pair with  the  key  value  x  and
        returns  an iterator to that pair if it is found. If such
        a pair is not found the value end() is returned.



     const_iterator find(const key_type& x) const;


        Same as find above but returns a const_iterator.



     pair<iterator, bool>
     insert(const value_type& x);
     iterator
     insert(iterator position, const value_type& x);


        If a value_type with the same key as x is not present  in
        the  map, then x is inserted into the map. Otherwise, the
        pair is not inserted. A position may  be  supplied  as  a
        hint  regarding  where to do the insertion. If the inser-
        tion is done right after position, then  it  takes  amor-
        tized constant time. Otherwise it takes O(log N) time.



     template <class InputIterator>
     void
     insert(InputIterator first, InputIterator last);


        Copies of each element in the range  [first,  last)  that
        possess  a  unique  key  (one not already in the map) are
        inserted into the map. The iterators first and last  must
        return  values  of type pair<T1,T2>. This operation takes
        approximately O(N*log(size()+N)) time.



     key_compare
     key_comp() const;


        Returns a function object capable of comparing key values
        using  the  comparison operation, Compare, of the current
        map.



     iterator
     lower_bound(const key_type& x);


        Returns a reference to the first entry with a key greater
        than or equal to x.



     const_iterator
     lower_bound(const key_type& x) const;


        Same as lower_bound above but returns a const_iterator.



     size_type
     max_size() const;


        Returns the maximum possible size of the map.   This size
        is only constrained by the number of unique keys that can
        be represented by the type Key.



     size_type
     size() const;


        Returns the number of elements in the map.



     void
     swap(map<Key, T, Compare, Allocator>& x);


        Swaps the contents of the map x  with  the  current  map,
        *this.



     iterator
     upper_bound(const key_type& x);


        Returns a reference to the first entry with  a  key  less
        than or equal to x.



     const_iterator
     upper_bound(const key_type& x) const;


        Same as upper_bound above but returns a const_iterator.



     value_compare
     value_comp() const;


        Returns a function object capable of comparing pair<const
        Key,  T>  values using the comparison operation, Compare,
        of  the  current  map.  This  function  is  identical  to
        key_comp for sets.





NON-MEMBER OPERATORS

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator==(const map<Key, T, Compare, Allocator>& x,
                     const map<Key, T, Compare, Allocator>& y);


        Returns true if all elements in x are element-wise  equal
        to all elements in y, using (T::operator==). Otherwise it
        returns false.



     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator!=(const map<Key, T, Compare, Allocator>& x,
                     const map<Key, T, Compare, Allocator>& y);


        Returns !(x==y).



     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator<(const map<Key, T, Compare, Allocator>& x,
                    const map<Key, T, Compare, Allocator>& y);


        Returns true if x is lexicographically less than y.  Oth-
        erwise, it returns false.



     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator>(const map<Key, T, Compare, Allocator>& x,
                    const map<Key, T, Compare, Allocator>& y);


        Returns y < x.



     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator<=(const map<Key, T, Compare, Allocator>& x,
                    const map<Key, T, Compare, Allocator>& y);


        Returns !(y < x).

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     bool operator>=(const map<Key, T, Compare, Allocator>& x,
                    const map<Key, T, Compare, Allocator>& y);


        Returns !(x < y).






SPECIALIZED ALGORITHMS

     template <class Key, class T, class Compare,  class  Alloca-
     tor>
     void swap(map<Key, T, Compare, Allocator>& a,
               map<Key, T, Compare, Allocator>& b);


        Swaps the contents of a and b.






EXAMPLE

     //
     // map.cpp
     //
      #include <string>
      #include <map>
      #include <iostream>
     using namespace std;

     typedef map<string, int, less<string> > months_type;

      // Print out a pair
     template <class First, class Second>
     ostream& operator<<(ostream& out,
                         const pair<First,Second> & p)
      {
       cout << p.first << " has " << p.second << " days";
       return out;
      }

      // Print out a map
     ostream& operator<<(ostream& out, const months_type & l)
      {
       copy(l.begin(),l.end(), ostream_iterator
                     <months_type::value_type,char>(cout,"\n"));
       return out;
      }

     int main(void)
      {
        // create a map of months and the number of days
        // in the month
       months_type months;

       typedef months_type::value_type value_type;

        // Put the months in the multimap
       months.insert(value_type(string("January"),   31));
       months.insert(value_type(string("February"),   28));
       months.insert(value_type(string("February"),   29));
       months.insert(value_type(string("March"),     31));
       months.insert(value_type(string("April"),     30));
       months.insert(value_type(string("May"),       31));
       months.insert(value_type(string("June"),      30));
       months.insert(value_type(string("July"),      31));
       months.insert(value_type(string("August"),    31));
       months.insert(value_type(string("September"), 30));
       months.insert(value_type(string("October"),   31));
       months.insert(value_type(string("November"),  30));
       months.insert(value_type(string("December"),  31));

        // print out the months
        // Second February is not present
       cout << months << endl;

        // Find the Number of days in June
       months_type::iterator p = months.find(string("June"));

        // print out the number of days in June
       if (p != months.end())
         cout << endl << *p << endl;

       return 0;
      }

     Program Output




     April has 30 days
     August has 31 days
     December has 31 days
     February has 28 days
     January has 31 days
     July has 31 days
     June has 30 days
     March has 31 days
     May has 31 days
     November has 30 days
     October has 31 days
     September has 30 days





WARNINGS

     Member  function  templates  are  used  in  all   containers
     included  in  the  Standard  Template Library. An example of
     this      feature      is      the      constructor      for
     map<Key,T,Compare,Allocator>   that  takes  two  templatized
     iterators:


     template <class InputIterator>
     map (InputIterator, InputIterator,
          const Compare& = Compare(),
          const Allocator& = Allocator());

     map also has an insert function of this  type.  These  func-
     tions,  when  not  restricted by compiler limitations, allow
     you to use any type of input iterator as arguments. For com-
     pilers  that  do  not support this feature, substitute func-
     tions allow you to use an iterator obtained  from  the  same
     type  of  container as the one you are constructing (or cal-
     ling a member function on), or you can use a pointer to  the
     type of element you have in the container.

     For example, if your compiler does not support member  func-
     tion templates, you can construct a map in the following two
     ways:


     map<int, int, less<int> >::value_type intarray[10];
     map<int, int, less<int> > first_map(intarray,
                                        intarray + 10);
     map<int, int, less<int> > second_map(first_map.begin(),
                                         first_map.end());

     But not this way:


     map<long, long, less<long> > long_map(first_map.begin(),
                                          first_map.end());

     Since the long_map and first_map are not the same type.

     Also, many compilers do not support default  template  argu-
     ments.  If your compiler is one of these, you always need to
     supply the Compare template argument and the Allocator  tem-
     plate argument. For instance, you have to write:

     map<int, int, less<int>, allocator<int> >

     instead of:

     map<int, int>

     If your compiler does not support namespaces,  then  you  do
     not need the using declaration for std.





SEE ALSO

     allocator, Containers, Iterators, multimap