Man Page complex.3



                       Standard C++ Library
             Copyright 1998, Rogue Wave Software, Inc.



NAME

     complex

      - C++ complex number library





SPECIALIZATIONS

     complex <float>
     complex <double>
     complex <long double>





SYNOPSIS

     #include <complex>
     template <class T>
     class complex;
     class complex<float>;
     class complex<double>;
     class complex<long double>;





DESCRIPTION

     complex<T> is a class that supports complex numbers. A  com-
     plex  number has a real part and an imaginary part. The com-
     plex class supports equality, comparison  and  basic  arith-
     metic  operations.  In addition, mathematical functions such
     as exponents, logarithms, powers, and square roots are  also
     available.





INTERFACE

     template <class T>
     class complex {

     public:
       typedef T value_type;

       complex (const T& re = T(), const T& im = T());
       complex (const complex&);
       template <class X> complex
         (const complex<X>&);

       T real () const;
       T imag () const;

       complex<T>& operator= (const T&);
       complex<T>& operator+=(const T&);
       complex<T>& operator-=(const T&);
       complex<T>& operator*=(const T&);
       complex<T>& operator/=(const T&);

       template <class X>
        complex<T>& operator= (const complex<X>&);

       template <class X>
        complex<T>& operator+= (const complex<X>&);
       template <class X>
        complex<T>& operator-= (const complex<X>&);
       template <class X>
        complex<T>& operator*= (const complex<X>&);
       template <class X>
        complex<T>& operator/= (const complex<X>&);
     };
     // Non-member Operators

     template<class T>
     complex<T> operator+ (const complex<T>&,
                           const complex<T>&);
     template<class T>
     complex<T> operator+ (const complex<T>&, T&);
     template<class T>
     complex<T> operator+ (T, const complex<T>&);

     template<class T>
     complex<T> operator- (const complex<T>&,
                           const complex<T>&);
     template<class T>
     complex<T> operator- (const complex<T>&, T&);
     template<classT>
     complex<T> operator- (T, const complex<T>&);

     template<class T>
     complex<T> operator* (const complex<T>&,
                           const complex<T>&);
     template<class T>
     complex<T> operator* (const complex<T>&, T&);
     template<class T>
     complex<T> operator* (T, const complex<T>&);

     template<class T>
     complex<T> operator/ (const complex<T>&,
                           const complex<T>&);

     template<class T>
     complex<T> operator/ (const complex<T>&, T&);
     template<class T>
     complex<T> operator/ (T, const complex<T>&);

     template<class T>
     complex<T> operator+ (const complex<T>&);
     template<class T>
     complex<T> operator- (const complex<T>&);

     template<class T>
     bool operator== (const complex<T>&, const complex<T>&);
     template<class T>
     bool operator== (const complex<T>&, T&);
     template<class T>
     bool operator== (T, const complex<T>&);

     template<class T>
     bool operator!= (const complex<T>&, const complex<T>&);
     template<class T>
     bool operator!= (const complex<T>&, T&);
     template<class T>
     bool operator!= (T, const complex<T>&);

     template <class T, class charT, class traits>
     basic_istream<charT, traits>& operator>>
                   (istream&, complex<T>&);
     template <class T, class charT, class traits>
     basic_ostream<charT, traits>& operator<<
                   (ostream&, const complex<T>&);

     // Values
     template<class T> T real (const complex<T>&);
     template<class T> T imag (const complex<T>&);

     template<class T> T abs (const complex<T>&);
     template<class T> T arg (const complex<T>&);
     template<class T> T norm (const complex<T>&);

     template<class T> complex<T> conj (const complex<T>&);
     template<class T> complex<T> polar (const T&, const T&);

     // Transcendentals
     template<class T> complex<T> cos (const complex<T>&);
     template<class T> complex<T> cosh (const complex<T>&);
     template<class T> complex<T> exp (const complex<T>&);
     template<class T> complex<T> log (const complex<T>&);

     template<class T> complex<T> log10 (const complex<T>&);

     template<class T> complex<T> pow (const complex<T>&, int);
     template<class T> complex<T> pow (const complex<T>&, T&);
     template<class T> complex<T> pow (const complex<T>&,
                                      const complex<T>&);
     template<class T> complex<T> pow (const T&,
                                      const complex<T>&);

     template<class T> complex<T> sin (const complex<T>&);
     template<class T> complex<T> sinh (const complex<T>&);
     template<class T> complex<T> sqrt (const complex<T>&);
     template<class T> complex<T> tan (const complex<T>&);
     template<class T> complex<T> tanh (const complex<T>&);





CONSTRUCTORS

     complex
     (const T& re_arg = T(), const T& im_arg = T());


        Constructs  an  object  of  class  complex,  initializing
        re_arg to the real part and im_arg to the imaginary part.



     template <class X> complex
     (const complex<X>&);


        Constructs a complex number from another complex number.






ASSIGNMENT OPERATORS

     complex<T>& operator=(const T& v);


        Assigns v to the real part of itself,  setting  the  ima-
        ginary part to 0.



     complex<T>& operator+=(const T& v);


        Adds v to the real  part  of  itself,  then  returns  the
        result.



     complex<T>& operator-=(const T& v);
        Subtracts v from the real part of  itself,  then  returns
        the result.



     complex<T>& operator*=(const T& v);


        Multiplies v by the real part of itself, then returns the
        result.



     complex<T>& operator/=(const T& v);


        Divides v by the real part of itself,  then  returns  the
        result.



     template <class X>
     complex<T>
     operator=(const complex<X>& c);


        Assigns c to itself.



     template <class X>
     complex<T>
     operator+=(const complex<X>& c);


        Adds c to itself, then returns the result.



     template <class X>
     complex<T>
     operator-=(const complex<X>& c);


        Subtracts c from itself, then returns the result.



     template <class X>
     complex<T>
     operator*=(const complex<X>& c);

        Multiplies itself by c, then returns the result.



     template <class X>
     complex<T>
     operator/=(const complex<X>& c);


        Divides itself by c, then returns the result.






MEMBER FUNCTIONS

     T
     imag() const;


        Returns the imaginary part of the complex number.



     T
     real() const;


        Returns the real part of the complex number.






NON-MEMBER OPERATORS

     template<class T> complex<T>
     operator+(const complex<T>& lhs,const complex<T>& rhs);
     template<class T> complex<T>
     operator+(const complex<T>& lhs, const T& rhs);
     template<class T> complex<T>
     operator+(const T& lhs, const complex<T>& rhs);


        Returns the sum of lhs and rhs.



     template<class T> complex<T>
     operator-(const complex<T>& lhs,const complex<T>& rhs);
     template<class T> complex<T>
     operator-(const complex<T>& lhs, const T& rhs);
     template<class T> complex<T>
     operator-(const T& lhs, const complex<T>& rhs);


        Returns the difference of lhs and rhs.



     template<class T> complex<T>
     operator*(const complex<T>& lhs,const complex<T>& rhs);
     template<class T> complex<T>
     operator*(const complex<T>& lhs, const T& rhs);
     template<class T> complex<T>
     operator* (const T& lhs, const complex<T>& rhs);


        Returns the product of lhs and rhs.



     template<class T> complex<T>
     operator/(const complex<T>& lhs,const complex<T>& rhs);
     template<class T> complex<T>
     operator/(const complex<T>& lhs, const T& rhs);
     template<class T> complex<T>
     operator/(const T& lhs, const complex<T>& rhs);


        Returns the quotient of lhs divided by rhs.



     template<class T> complex<T>
     operator+(const complex<T>& rhs);


        Returns rhs.



     template<class T> complex<T>
     operator-(const complex<T>& lhs);


        Returns complex<T>(-lhs.real(), -lhs.imag()).



     template<class T> bool
     operator==(const complex<T>& x, const complex<T>& y);


        Returns true if the real and imaginary parts of x  and  y
        are equal.



     template<class T> bool
     operator==(const complex<T>& x, const T& y);


        Returns true if y is equal to the real part of x and  the
        imaginary part of x is equal to 0.



     template<class T> bool
     operator==(const T& x, const complex<T>& y);


        Returns true if x is equal to the real part of y and  the
        imaginary part of y is equal to 0.



     template<class T> bool
     operator!=(const complex<T>& x, const complex<T>& y);


        Returns true if either the real or the imaginary part  of
        x and y are not equal.



     template<class T> bool
     operator!=(const complex<T>& x, const T& y);


        Returns true if y is not equal to the real part of  x  or
        the imaginary part of x is not equal to 0.



     template<class T> bool
     operator!=(const T& x, const complex<T>& y);


        Returns true if x is not equal to the real part of  y  or
        the imaginary part of y is not equal to 0.



     template <class T, class charT, class traits>
              basic_istream<charT, traits>&
     operator>>(basic_istream<charT, traits>& is, complex<T>& x);
        Reads a complex number x into the input stream is. x  may
        be  of the form u, (u), or (u,v) where u is the real part
        and v is the imaginary part. If bad input is encountered,
        is.setstate(ios::failbit) is called.



     template <class T, class charT, class traits>
              basic_ostream<charT, traits>&
     operator<<(basic_ostream<charT, traits>& os,
               const complex<T>& x);


        Returns os << "(" << x.real() << ","  << x.imag() << ")".






NON-MEMBER FUNCTIONS

     template<class T> T
     abs(const complex<T>& c);


        Returns the absolute value or magnitude of c (the  square
        root of the norm).



     template<class T> T
     arg(const complex<T>& x);


        Returns the phase angle of x or atan2(imag(x), real(x)).



     template<class T> complex<T>
     conj(const complex<T>& c);


        Returns the conjugate of c.



     template<class T> complex<T>
     cos(const complex<T>& c);


        Returns the cosine of c.


     template<class T> complex<T>
     cosh(const complex<T>& c);


        Returns the hyperbolic cosine of c.



     template<class T> complex<T>
     exp(const complex<T>& x);


        Returns e raised to the x power.



     template<class T> T
     imag(const complex<T>& c) const;


        Returns the imaginary part of c.



     template<class T> complex<T>
     log(const complex<T>& x);


        Returns the complex natural (base e) logarithm of  x,  in
        the  range  of a strip mathematically unbounded along the
        real axis and in the interval [-i times pi, i times pi  ]
        along  the  imaginary  axis.  When x is a nega- tive real
        number, imag(log(x)) is pi.

        The branch cuts are along the negative real axis.



     template<class T> complex<T>
     log10(const complex<T>& x);


        Returns the complex common  (base  10)  logarithm  of  x,
        defined as log(x)/log(10).

        The branch cuts are along the negative real axis.



     template<class T> T
     norm(const complex<T>& c);

        Returns the squared magnitude  of  c.  (The  sum  of  the
        squares of the real and imaginary parts.)



     template<class T> complex<T>
     polar(const T& m, const T& a = 0);


        Returns the complex value of a complex number whose  mag-
        nitude is m and phase angle is a, measured in radians.



     template<class T> complex<T>
     pow(const complex<T>& x, int y);
     template<class T> complex<T>
     pow(const complex<T>& x, const T& y);
     template<class T> complex<T>
     pow(const complex<T>& x, const complex<T>& y);
     template<class T> complex<T>
     pow(const T& x, const complex<T>& y);


        Returns x raised to the y power; or, if called  with  (0,
        0),  returns        complex <T>(1,0). The branch cuts are
        along the negative real axis.



     template<class T> T
     real(const complex<T>& c);


        Returns the real part of c.



     template<class T> complex<T>
     sin(const complex<T>& c);


        Returns the sine of c.



     template<class T> complex<T>
     sinh(const complex<T>& c);


        Returns the hyperbolic sine of c.

     template<class T> complex<T>
     sqrt(const complex<T>& x);


        Returns the complex square root of x, in the range of the
        right  half-plane.  If  the  argument  is a negative real
        number, the value returned lies on the positive imaginary
        axis. The branch cuts are along the negative real axis.



     template<class T> complex<T>
     tan(const complex<T>& x);


        Returns the tangent of x.



     template<class T> complex<T>
     tanh(const complex<T>& x);


        Returns the hyperbolic tangent of x.






EXAMPLE

     //
     // complex.cpp
     //
      #include <complex>
      #include <iostream>
     using namespace std;

     int main()
      {
       complex<double> a(1.2, 3.4);
       complex<double> b(-9.8, -7.6);

       a += b;
       a /= sin(b) * cos(a);
       b *= log(a) + pow(b, a);

       cout << "a = " << a << ", b = " << b << endl;

       return 0;
      }

     Program Output
     a = (1.42804e-06,-0.0002873), b = (58.2199,69.7354)





WARNINGS

     On compilers that don't support member  function  templates,
     the  arithmetic operators do not work on any arbitrary type;
     they work only on float, double and long doubles. Also,  you
     can  perform  binary  arithmetic  only on types that are the
     same.

     Compilers that  don't  support  non-converting  constructors
     permit unsafe downcasts (for example, long double to double,
     double to float, long double to float).

     If your compiler does not support namespaces,  then  you  do
     not need the using declaration for std.